多能性因子被重新用于塑造神经嵴细胞的表观基因组景观。

Pluripotency factors are repurposed to shape the epigenomic landscape of neural crest cells.

机构信息

Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA.

Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA.

出版信息

Dev Cell. 2022 Oct 10;57(19):2257-2272.e5. doi: 10.1016/j.devcel.2022.09.006. Epub 2022 Sep 30.

Abstract

Yamanaka factors are essential for establishing pluripotency in embryonic stem cells, but their function in multipotent stem cell populations is poorly understood. Here, we show that OCT4 and SOX2 cooperate with tissue-specific transcription factors to promote neural crest formation. By assessing avian and human neural crest cells at distinct developmental stages, we characterized the epigenomic changes that occur during their specification, migration, and early differentiation. This analysis determined that the OCT4-SOX2 dimer is required to establish a neural crest epigenomic signature that is lost upon cell fate commitment. The OCT4-SOX2 genomic targets in the neural crest differ from those of embryonic stem cells, indicating the dimer displays context-specific functions. Binding of OCT4-SOX2 to neural crest enhancers requires pioneer factor TFAP2A, which physically interacts with the dimer to modify its genomic targets. Our results demonstrate how Yamanaka factors are repurposed in multipotent cells to control chromatin organization and define their developmental potential.

摘要

山中因子对于建立胚胎干细胞的多能性至关重要,但它们在多能干细胞群体中的功能还知之甚少。在这里,我们表明 OCT4 和 SOX2 与组织特异性转录因子合作,促进神经嵴的形成。通过评估不同发育阶段的禽类和人类神经嵴细胞,我们描述了在其特化、迁移和早期分化过程中发生的表观基因组变化。这项分析确定 OCT4-SOX2 二聚体是建立神经嵴表观基因组特征所必需的,而该特征在细胞命运决定后就会丢失。神经嵴中的 OCT4-SOX2 基因组靶标与胚胎干细胞中的靶标不同,表明二聚体表现出特定于上下文的功能。OCT4-SOX2 与神经嵴增强子的结合需要先驱因子 TFAP2A,后者与二聚体相互作用以改变其基因组靶标。我们的结果表明了山中因子如何在多能细胞中被重新用于控制染色质组织并定义其发育潜能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索