Food Microbiology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
Unilever R&D, 6708 WJ Wageningen, the Netherlands.
Int J Food Microbiol. 2022 Dec 16;383:109935. doi: 10.1016/j.ijfoodmicro.2022.109935. Epub 2022 Sep 17.
Variability and uncertainty are important factors for quantitative microbiological risk assessment (QMRA). In this context, variability refers to inherent sources of variation, whereas uncertainty refers to imprecise knowledge or lack of it. In this work we compare three statistical methods to estimate variability in the kinetic parameters of microbial populations: mixed-effect models, multilevel Bayesian models, and a simplified algebraic method previously suggested. We use two case studies that analyse the influence of three levels of variability: (1) between-strain variability (different strains of the same species), (2) within-strain variability (biologically independent reproductions of the same strain) and, at the most nested level, (3) experimental variability (species independent technical lab variability resulting in uncertainty about the population characteristic of interest) on the growth and inactivation of Listeria monocytogenes. We demonstrate that the algebraic method, although relatively easy to use, overestimates the contribution of between-strain and within-strain variability due to the propagation of experimental variability in the nested experimental design. The magnitude of the bias is proportional to the variance of the lower levels and inversely proportional to the number of repetitions. This bias was very relevant in the case study related to growth, whereas for the case study on inactivation the resulting insights in variability were practically independent of the method used. The mixed-effects model and the multilevel Bayesian models calculate unbiased estimates for all levels of variability in all the cases tested. Consequently, we recommend using the algebraic method for initial screenings due to its simplicity. However, to obtain parameter estimates for QMRA, the more complex methods should generally be used to obtain unbiased estimates.
变异性和不确定性是定量微生物风险评估(QMRA)的重要因素。在这种情况下,变异性是指固有变异源,而不确定性是指不准确的知识或缺乏知识。在这项工作中,我们比较了三种统计方法来估计微生物种群动力学参数的变异性:混合效应模型、多层次贝叶斯模型和之前提出的简化代数方法。我们使用两个案例研究来分析三个变异性水平的影响:(1)菌株间变异性(同一物种的不同菌株),(2)菌株内变异性(同一菌株的生物独立繁殖),以及最嵌套的水平,(3)实验变异性(导致对感兴趣的种群特征不确定性的独立于物种的技术实验室变异性)对李斯特菌生长和失活的影响。我们证明,尽管代数方法相对容易使用,但由于在嵌套实验设计中传播实验变异性,它高估了菌株间和菌株内变异性的贡献。偏差的大小与较低水平的方差成正比,与重复次数成反比。这种偏差在与生长相关的案例研究中非常重要,而在与失活相关的案例研究中,变异性的结果洞察实际上与所使用的方法无关。混合效应模型和多层次贝叶斯模型在所有测试的情况下为所有变异性水平计算了无偏差的估计值。因此,我们建议使用代数方法进行初始筛选,因为它简单。然而,为了获得 QMRA 的参数估计值,通常应该使用更复杂的方法来获得无偏差的估计值。