Suppr超能文献

超越微调:使用保持函数的变换对高分辨率乳房 X 光照片进行分类。

Beyond fine-tuning: Classifying high resolution mammograms using function-preserving transformations.

机构信息

The Department of Computer Science, State University of New York at Buffalo, NY, USA.

The Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK.

出版信息

Med Image Anal. 2022 Nov;82:102618. doi: 10.1016/j.media.2022.102618. Epub 2022 Sep 6.

Abstract

The task of classifying mammograms is very challenging because the lesion is usually small in the high resolution image. The current state-of-the-art approaches for medical image classification rely on using the de-facto method for convolutional neural networks-fine-tuning. However, there are fundamental differences between natural images and medical images, which based on existing evidence from the literature, limits the overall performance gain when designed with algorithmic approaches. In this paper, we propose to go beyond fine-tuning by introducing a novel framework called MorphHR, in which we highlight a new transfer learning scheme. The idea behind the proposed framework is to integrate function-preserving transformations, for any continuous non-linear activation neurons, to internally regularise the network for improving mammograms classification. The proposed solution offers two major advantages over the existing techniques. Firstly and unlike fine-tuning, the proposed approach allows for modifying not only the last few layers but also several of the first ones on a deep ConvNet. By doing this, we can design the network front to be suitable for learning domain specific features. Secondly, the proposed scheme is scalable to hardware. Therefore, one can fit high resolution images on standard GPU memory. We show that by using high resolution images, one prevents losing relevant information. We demonstrate, through numerical and visual experiments, that the proposed approach yields to a significant improvement in the classification performance over state-of-the-art techniques, and is indeed on a par with radiology experts. Moreover and for generalisation purposes, we show the effectiveness of the proposed learning scheme on another large dataset, the ChestX-ray14, surpassing current state-of-the-art techniques.

摘要

对乳腺 X 光图像进行分类的任务非常具有挑战性,因为病灶在高分辨率图像中通常很小。目前用于医学图像分类的最先进方法依赖于使用卷积神经网络的事实上的方法——微调。然而,自然图像和医学图像之间存在根本差异,根据文献中的现有证据,这限制了使用算法方法设计时的整体性能增益。在本文中,我们提出了一种超越微调的新框架,称为 MorphHR,其中我们强调了一种新的迁移学习方案。该框架背后的想法是通过集成保留功能的变换,对任何连续的非线性激活神经元,来对网络进行内部正则化,以提高乳腺 X 光图像的分类。与现有技术相比,所提出的解决方案具有两个主要优势。首先,与微调不同,所提出的方法不仅允许修改最后几层,还允许修改深层 ConvNet 的前几层。通过这样做,我们可以设计网络前端以适合学习特定领域的特征。其次,所提出的方案在硬件上具有可扩展性。因此,人们可以在标准 GPU 内存上处理高分辨率图像。我们通过使用高分辨率图像表明,可以防止丢失相关信息。通过数值和可视化实验,我们证明了所提出的方法在分类性能方面优于最先进的技术,并且确实与放射科专家相当。此外,为了实现泛化,我们在另一个大型数据集 ChestX-ray14 上展示了所提出的学习方案的有效性,超过了当前最先进的技术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验