Ko Jaehyoung, Yu Ilhwan, Jeon Seung-Yeol, Sohn Daewon, Im Sung Gap, Joo Yongho
Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea.
Department of Chemical and Biomolecular Engineering and KAIST Institute for Nano Century, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
JACS Au. 2022 Aug 26;2(9):2089-2097. doi: 10.1021/jacsau.2c00361. eCollection 2022 Sep 26.
Stable, nitroxide-based organic radicals have gained tremendous attention in a wide range of research fields, ranging from solid-state electronics to energy storage devices. While the success of these organics has been their designer flexibility and the processability that can fully potentiate the open-shell chemistry, a significant knowledge gap exists on the solid-state electronics of small-molecular radicals. Herein, we examine the structure-property relationship that governs the solid-state electronics of a model nitroxide and its derivatives by seeking the connection to their well-established, electrolyte-based chemistry. Further, we propose a general strategy of enhancing their solid-state conductivity by systematic humidity control. This study demonstrates an open-shell platform of the device operation and underlying principles thereof, which can potentially be applied in a number of future radical-based electronic devices.
基于氮氧化物的稳定有机自由基在从固态电子学到储能设备等广泛的研究领域中受到了极大关注。虽然这些有机物的成功之处在于其设计灵活性以及能够充分增强开壳层化学性质的可加工性,但在小分子自由基的固态电子学方面仍存在重大知识空白。在此,我们通过探寻与它们已确立的基于电解质的化学性质的联系,研究了控制一种模型氮氧化物及其衍生物固态电子学的结构 - 性质关系。此外,我们提出了一种通过系统湿度控制来提高其固态导电性的通用策略。这项研究展示了一种用于器件操作的开壳层平台及其潜在原理,这可能会应用于未来许多基于自由基的电子设备中。