文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

活动驱动的网络建模与两种并发流行毒株传播的控制

Activity-driven network modeling and control of the spread of two concurrent epidemic strains.

作者信息

Burbano Lombana Daniel Alberto, Zino Lorenzo, Butail Sachit, Caroppo Emanuele, Jiang Zhong-Ping, Rizzo Alessandro, Porfiri Maurizio

机构信息

Center for Urban Science and Progress, Tandon School of Engineering, New York University, 370 Jay Street, Brooklyn, NY 11201 USA.

Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Six MetroTech Center, Brooklyn, NY 11201 USA.

出版信息

Appl Netw Sci. 2022;7(1):66. doi: 10.1007/s41109-022-00507-6. Epub 2022 Sep 27.


DOI:10.1007/s41109-022-00507-6
PMID:36186912
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9514203/
Abstract

The emergency generated by the current COVID-19 pandemic has claimed millions of lives worldwide. There have been multiple waves across the globe that emerged as a result of new variants, due to arising from unavoidable mutations. The existing network toolbox to study epidemic spreading cannot be readily adapted to the study of multiple, coexisting strains. In this context, particularly lacking are models that could elucidate re-infection with the same strain or a different strain-phenomena that we are seeing experiencing more and more with COVID-19. Here, we establish a novel mathematical model to study the simultaneous spreading of two strains over a class of temporal networks. We build on the classical susceptible-exposed-infectious-removed model, by incorporating additional states that account for infections and re-infections with multiple strains. The temporal network is based on the activity-driven network paradigm, which has emerged as a model of choice to study dynamic processes that unfold at a time scale comparable to the network evolution. We draw analytical insight from the dynamics of the stochastic network systems through a mean-field approach, which allows for characterizing the onset of different behavioral phenotypes (non-epidemic, epidemic, and endemic). To demonstrate the practical use of the model, we examine an intermittent stay-at-home containment strategy, in which a fraction of the population is randomly required to isolate for a fixed period of time.

摘要

当前新冠疫情引发的紧急情况已在全球夺走数百万人的生命。由于不可避免的突变产生了新的变种,全球出现了多波疫情。现有的用于研究疫情传播的网络工具箱无法轻易适用于对多种共存毒株的研究。在这种背景下,尤其缺乏能够阐明同一毒株或不同毒株再次感染现象的模型,而新冠疫情中我们越来越多地看到了这种现象。在此,我们建立了一个新颖的数学模型来研究两种毒株在一类时间网络上的同时传播。我们在经典的易感-暴露-感染-清除模型的基础上,纳入了用于解释多种毒株感染和再次感染的额外状态。时间网络基于活动驱动网络范式,该范式已成为研究在与网络演化相当的时间尺度上展开的动态过程的首选模型。我们通过平均场方法从随机网络系统的动态中获得分析见解,这使得能够表征不同行为表型(非流行、流行和地方流行)的起始。为了证明该模型的实际用途,我们研究了一种间歇性居家防控策略,即随机要求一部分人口在固定时间段内进行隔离。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1344/9514203/46080d52bc42/41109_2022_507_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1344/9514203/e8832365ea61/41109_2022_507_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1344/9514203/890c80fcb4fe/41109_2022_507_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1344/9514203/efa74d19bde4/41109_2022_507_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1344/9514203/46080d52bc42/41109_2022_507_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1344/9514203/e8832365ea61/41109_2022_507_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1344/9514203/890c80fcb4fe/41109_2022_507_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1344/9514203/efa74d19bde4/41109_2022_507_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1344/9514203/46080d52bc42/41109_2022_507_Fig4_HTML.jpg

相似文献

[1]
Activity-driven network modeling and control of the spread of two concurrent epidemic strains.

Appl Netw Sci. 2022

[2]
Modeling latent infection transmissions through biosocial stochastic dynamics.

PLoS One. 2020-10-23

[3]
#stayhome to contain Covid-19: Neuro-SIR - Neurodynamical epidemic modeling of infection patterns in social networks.

Expert Syst Appl. 2021-3-1

[4]
Epidemic spreading with activity-driven awareness diffusion on multiplex network.

Chaos. 2016-4

[5]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[6]
How adherence to public health measures shapes epidemic spreading: A temporal network model.

Chaos. 2021-4

[7]
Human mobility and time spent at destination: impact on spatial epidemic spreading.

J Theor Biol. 2013-9-4

[8]
Epidemic cycling in a multi-strain SIRS epidemic network model.

Theor Biol Med Model. 2016-4-18

[9]
SpatialWavePredict: a tutorial-based primer and toolbox for forecasting growth trajectories using the ensemble spatial wave sub-epidemic modeling framework.

BMC Med Res Methodol. 2024-6-7

[10]
Modeling household and community transmission of Ebola virus disease: Epidemic growth, spatial dynamics and insights for epidemic control.

Virulence. 2016

引用本文的文献

[1]
Exploring a COVID-19 Endemic Scenario: High-Resolution Agent-Based Modeling of Multiple Variants.

Adv Theory Simul. 2023-1

本文引用的文献

[1]
Effect of Human Behavior on the Evolution of Viral Strains During an Epidemic.

Bull Math Biol. 2022-11-5

[2]
Monkeypox: A Comprehensive Review of Transmission, Pathogenesis, and Manifestation.

Cureus. 2022-7-3

[3]
First detection of SARS-CoV-2 Omicron BA.4 variant in Western Pennsylvania, United States.

J Med Virol. 2022-9

[4]
Reinfection in patients with COVID-19: a systematic review.

Glob Health Res Policy. 2022-4-29

[5]
Modeling COVID-19 dynamic using a two-strain model with vaccination.

Chaos Solitons Fractals. 2022-4

[6]
Of variants and vaccines.

Cell. 2021-12-22

[7]
Scoping Review on the Impact of Outbreaks on Sexual and Reproductive Health Services: Proposed Frameworks for Pre-, Intra-, and Postoutbreak Situations.

Biomed Res Int. 2021

[8]
Modelling and optimal control of multi strain epidemics, with application to COVID-19.

PLoS One. 2021

[9]
Game-theoretic modeling of collective decision making during epidemics.

Phys Rev E. 2021-8

[10]
Covasim: An agent-based model of COVID-19 dynamics and interventions.

PLoS Comput Biol. 2021-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索