Suppr超能文献

蓝光光学相干显微镜角膜成像

Corneal imaging with blue-light optical coherence microscopy.

作者信息

Khan Shanjida, Neuhaus Kai, Thaware Omkar, Ni Shuibin, Ju Myeong Jin, Redd Travis, Huang David, Jian Yifan

机构信息

Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.

Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.

出版信息

Biomed Opt Express. 2022 Aug 30;13(9):5004-5014. doi: 10.1364/BOE.465707. eCollection 2022 Sep 1.

Abstract

Corneal imaging is important for the diagnostic and therapeutic evaluation of many eye diseases. Optical coherence tomography (OCT) is extensively used in ocular imaging due to its non-invasive and high-resolution volumetric imaging characteristics. Optical coherence microscopy (OCM) is a technical variation of OCT that can image the cornea with cellular resolution. Here, we demonstrate a blue-light OCM as a low-cost and easily reproducible system to visualize corneal cellular structures such as epithelial cells, endothelial cells, keratocytes, and collagen bundles within stromal lamellae. Our blue-light OCM system achieved an axial resolution of 12 µm in tissue over a 1.2 mm imaging depth, and a lateral resolution of 1.6 µm over a field of view of 750 µm × 750 µm.

摘要

角膜成像对于许多眼部疾病的诊断和治疗评估至关重要。光学相干断层扫描(OCT)因其非侵入性和高分辨率的容积成像特性而广泛应用于眼部成像。光学相干显微镜(OCM)是OCT的一种技术变体,能够以细胞分辨率对角膜进行成像。在此,我们展示了一种蓝光OCM,它是一种低成本且易于重现的系统,可用于可视化角膜细胞结构,如上皮细胞、内皮细胞、角膜细胞以及基质板层内的胶原束。我们的蓝光OCM系统在1.2毫米的成像深度内,在组织中实现了12微米的轴向分辨率,在750微米×750微米的视野范围内实现了1.6微米的横向分辨率。

相似文献

1
Corneal imaging with blue-light optical coherence microscopy.
Biomed Opt Express. 2022 Aug 30;13(9):5004-5014. doi: 10.1364/BOE.465707. eCollection 2022 Sep 1.
3
Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography.
Invest Ophthalmol Vis Sci. 2004 Nov;45(11):4126-31. doi: 10.1167/iovs.04-0584.
4
Non-invasive imaging of human corneal microstructures with optical coherence microscopy.
Biomed Opt Express. 2023 Aug 25;14(9):4888-4900. doi: 10.1364/BOE.495242. eCollection 2023 Sep 1.
6
250 kHz, 1.5 µm resolution SD-OCT for cellular imaging of the human cornea.
Biomed Opt Express. 2018 Nov 29;9(12):6569-6583. doi: 10.1364/BOE.9.006569. eCollection 2018 Dec 1.
7
8
Computed optical interferometric tomography for high-speed volumetric cellular imaging.
Biomed Opt Express. 2014 Aug 8;5(9):2988-3000. doi: 10.1364/BOE.5.002988. eCollection 2014 Sep 1.
9
Full-field optical coherence tomography of human donor and pathological corneas.
Curr Eye Res. 2015 May;40(5):526-34. doi: 10.3109/02713683.2014.935444. Epub 2014 Sep 24.
10
Ultrahigh speed spectral-domain optical coherence microscopy.
Biomed Opt Express. 2013 Jul 1;4(8):1236-54. doi: 10.1364/BOE.4.001236. eCollection 2013.

引用本文的文献

1
Visible Light Optical Coherence Tomography: Technology and Biomedical Applications.
Bioengineering (Basel). 2025 Jul 17;12(7):770. doi: 10.3390/bioengineering12070770.
2
High-resolution visible light OCT of the human retina with combined superluminescent diodes.
Opt Lett. 2025 Jun 15;50(12):4070-4073. doi: 10.1364/OL.560148.
3
Probabilistic volumetric speckle suppression in OCT using deep learning.
Biomed Opt Express. 2024 Jul 3;15(8):4453-4469. doi: 10.1364/BOE.523716. eCollection 2024 Aug 1.
4
Real-time line-field optical coherence tomography for cellular resolution imaging of biological tissue.
Biomed Opt Express. 2024 Jan 25;15(2):1059-1073. doi: 10.1364/BOE.511187. eCollection 2024 Feb 1.
5
Non-invasive imaging of human corneal microstructures with optical coherence microscopy.
Biomed Opt Express. 2023 Aug 25;14(9):4888-4900. doi: 10.1364/BOE.495242. eCollection 2023 Sep 1.
7
Computational 3D resolution enhancement for optical coherence tomography with a narrowband visible light source.
Biomed Opt Express. 2023 Jun 21;14(7):3532-3554. doi: 10.1364/BOE.487345. eCollection 2023 Jul 1.
8
Developing an experimental-computational workflow to study the biomechanics of the human conventional aqueous outflow pathway.
Acta Biomater. 2023 Jul 1;164:346-362. doi: 10.1016/j.actbio.2023.04.008. Epub 2023 Apr 16.

本文引用的文献

1
Line-scanning SD-OCT for , non-contact, volumetric, cellular resolution imaging of the human cornea and limbus.
Biomed Opt Express. 2022 Jun 17;13(7):4007-4020. doi: 10.1364/BOE.465916. eCollection 2022 Jul 1.
3
Infectious keratitis: an update on epidemiology, causative microorganisms, risk factors, and antimicrobial resistance.
Eye (Lond). 2021 Apr;35(4):1084-1101. doi: 10.1038/s41433-020-01339-3. Epub 2021 Jan 7.
4
Micro-optical coherence tomography for high-resolution morphologic imaging of cellular and nerval corneal micro-structures.
Biomed Opt Express. 2020 Sep 28;11(10):5920-5933. doi: 10.1364/BOE.402971. eCollection 2020 Oct 1.
5
Multiwavelength confocal laser scanning microscopy of the cornea.
Biomed Opt Express. 2020 Sep 18;11(10):5689-5700. doi: 10.1364/BOE.397615. eCollection 2020 Oct 1.
7
imaging of the human cornea with high-speed and high-resolution Fourier-domain full-field optical coherence tomography.
Biomed Opt Express. 2020 Apr 30;11(5):2849-2865. doi: 10.1364/BOE.393801. eCollection 2020 May 1.
10
Corneal Collagen Ordering After In Vivo Rose Bengal and Riboflavin Cross-Linking.
Invest Ophthalmol Vis Sci. 2020 Mar 9;61(3):28. doi: 10.1167/iovs.61.3.28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验