Suppr超能文献

超高速光谱域光学相干显微镜

Ultrahigh speed spectral-domain optical coherence microscopy.

作者信息

Lee Hsiang-Chieh, Liu Jonathan J, Sheikine Yuri, Aguirre Aaron D, Connolly James L, Fujimoto James G

机构信息

Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Biomed Opt Express. 2013 Jul 1;4(8):1236-54. doi: 10.1364/BOE.4.001236. eCollection 2013.

Abstract

We demonstrate a compact, ultrahigh speed spectral-domain optical coherence microscopy (SD-OCM) system for multiscale imaging of specimens at 840 nm. Using a high speed 512-pixel line scan camera, an imaging speed of 210,000 A-scans per second was demonstrated. Interchangeable water immersion objectives with magnifications of 10×, 20×, and 40× provided co-registered en face cellular-resolution imaging over several size scales. Volumetric OCM data sets and en face OCM images were demonstrated on both normal and pathological human colon and kidney specimens ex vivo with an axial resolution of ~4.2 µm, and transverse resolutions of ~2.9 µm (10×), ~1.7 µm (20×), and ~1.1 µm (40×) in tissue. In addition, en face OCM images acquired with high numerical aperture over an extended field-of-view (FOV) were demonstrated using image mosaicking. Comparison between en face OCM images among different transverse and axial resolutions was demonstrated, which promises to help the design and evaluation of imaging performance of Fourier domain OCM systems at different resolution regimes.

摘要

我们展示了一种紧凑的、超高速光谱域光学相干显微镜(SD-OCM)系统,用于在840nm波长下对样本进行多尺度成像。使用高速512像素线扫描相机,实现了每秒210,000次A扫描的成像速度。具有10×、20×和40×放大倍数的可互换水浸物镜,可在多个尺寸尺度上提供共配准的细胞分辨率的正面成像。在离体的正常和病理人类结肠及肾脏样本上展示了体积OCM数据集和正面OCM图像,轴向分辨率约为4.2µm,组织中的横向分辨率分别约为2.9µm(10×)、1.7µm(20×)和1.1µm(40×)。此外,使用图像拼接展示了在扩展视野(FOV)上通过高数值孔径采集的正面OCM图像。展示了不同横向和轴向分辨率的正面OCM图像之间的比较,这有望有助于设计和评估不同分辨率模式下傅里叶域OCM系统的成像性能。

相似文献

1
Ultrahigh speed spectral-domain optical coherence microscopy.
Biomed Opt Express. 2013 Jul 1;4(8):1236-54. doi: 10.1364/BOE.4.001236. eCollection 2013.
2
Swept source optical coherence microscopy using a 1310 nm VCSEL light source.
Opt Express. 2013 Jul 29;21(15):18021-33. doi: 10.1364/OE.21.018021.
3
High-speed processing architecture for spectral-domain optical coherence microscopy.
J Biomed Opt. 2008 Jul-Aug;13(4):044013. doi: 10.1117/1.2960018.
4
Swept source optical coherence microscopy using a Fourier domain mode-locked laser.
Opt Express. 2007 May 14;15(10):6210-7. doi: 10.1364/oe.15.006210.
7
Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head.
Invest Ophthalmol Vis Sci. 2008 Nov;49(11):5103-10. doi: 10.1167/iovs.08-2127. Epub 2008 Jul 24.
9
Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
Ophthalmology. 2005 Oct;112(10):1734-46. doi: 10.1016/j.ophtha.2005.05.023.
10
Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues.
Cancer Res. 2010 Dec 15;70(24):10071-9. doi: 10.1158/0008-5472.CAN-10-2968. Epub 2010 Nov 5.

引用本文的文献

1
Exploiting volumetric wave correlation for enhanced depth imaging in scattering medium.
Nat Commun. 2023 Apr 4;14(1):1878. doi: 10.1038/s41467-023-37467-z.
3
Multi-shaping technique reduces sidelobe magnitude in optical coherence tomography.
Biomed Opt Express. 2017 Oct 26;8(11):5267-5281. doi: 10.1364/BOE.8.005267. eCollection 2017 Nov 1.
6
Integrated local binary pattern texture features for classification of breast tissue imaged by optical coherence microscopy.
Med Image Anal. 2017 May;38:104-116. doi: 10.1016/j.media.2017.03.002. Epub 2017 Mar 8.
7
High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch.
Biomed Opt Express. 2015 Mar 18;6(4):1340-50. doi: 10.1364/BOE.6.001340. eCollection 2015 Apr 1.
8
Ultrahigh speed en face OCT capsule for endoscopic imaging.
Biomed Opt Express. 2015 Mar 5;6(4):1146-63. doi: 10.1364/BOE.6.001146. eCollection 2015 Apr 1.
10
Capturing structure and function in an embryonic heart with biophotonic tools.
Front Physiol. 2014 Sep 23;5:351. doi: 10.3389/fphys.2014.00351. eCollection 2014.

本文引用的文献

1
Multimodal Skin Imaging with Integrated Optical Coherence and Multiphoton Microscopy.
IEEE J Sel Top Quantum Electron. 2012 Jun 27;18(4):1280-1286. doi: 10.1109/JSTQE.2011.2166377.
2
Interferometric synthetic aperture microscopy.
Nat Phys. 2007 Feb 1;3(2):129-134. doi: 10.1038/nphys514.
3
High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range.
Electron Lett. 2012 Jul 5;48(14):867-869. doi: 10.1049/el.2012.1552.
5
6
Integrated optical coherence tomography and optical coherence microscopy imaging of ex vivo human renal tissues.
J Urol. 2012 Feb;187(2):691-9. doi: 10.1016/j.juro.2011.09.149. Epub 2011 Dec 16.
7
High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second.
Biomed Opt Express. 2011 Oct 1;2(10):2770-83. doi: 10.1364/BOE.2.002770. Epub 2011 Sep 12.
9
Extended focus high-speed swept source OCT with self-reconstructive illumination.
Opt Express. 2011 Jun 20;19(13):12141-55. doi: 10.1364/OE.19.012141.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验