Suppr超能文献

新冠疫情期间推特上的政治两极分化:巴西的一个案例研究

Political polarization on Twitter during the COVID-19 pandemic: a case study in Brazil.

作者信息

Brum Pedro, Cândido Teixeira Matheus, Vimieiro Renato, Araújo Eric, Meira Wagner, Lobo Pappa Gisele

机构信息

Computer Science Department, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901 Brazil.

Computer Science Department, Universidade Federal de Lavras, Aquenta Sol, Lavras, MG 37200-900 Brazil.

出版信息

Soc Netw Anal Min. 2022;12(1):140. doi: 10.1007/s13278-022-00949-x. Epub 2022 Sep 23.

Abstract

The debate over the COVID-19 pandemic is constantly trending at online conversations since its beginning in 2019. The discussions in many social media platforms is related not only to health aspects of the disease, but also public policies and non-pharmacological measures to mitigate the spreading of the virus and propose alternative treatments. Divergent opinions regarding these measures are leading to heated discussions and polarization. Particularly in highly politically polarized countries, users tend to be divided in those in-favor or against government policies. In this work we present a computational method to analyze Twitter data and: (i) identify users with a high probability of being bots using only COVID-19 related messages; (ii) quantify the political polarization of the Brazilian general public in the context of the COVID-19 pandemic; (iii) analyze how bots tweet and affect political polarization. We collected over 100 million tweets from 26 April 2020 to 3 January 2021, and observed in general a highly polarized population (with polarization index varying from 0.57 to 0.86), which focuses on very different topics of discussions over the most polarized weeks-but all related to government and health-related events.

摘要

自2019年新冠疫情开始以来,关于它的争论在网络对话中一直占据热门趋势。许多社交媒体平台上的讨论不仅涉及该疾病的健康方面,还包括公共政策以及减轻病毒传播和提出替代治疗方法的非药物措施。关于这些措施的不同意见引发了激烈的讨论和两极分化。特别是在政治两极分化严重的国家,用户往往分为支持或反对政府政策的两派。在这项工作中,我们提出了一种计算方法来分析推特数据,并:(i)仅使用与新冠疫情相关的信息识别极有可能是机器人的用户;(ii)在新冠疫情背景下量化巴西普通民众的政治两极分化程度;(iii)分析机器人如何发推文以及影响政治两极分化。我们收集了从2020年4月26日到2021年1月3日的超过1亿条推文,总体上观察到一个两极分化程度很高的群体(两极分化指数从0.57到0.86不等),在两极分化最严重的几周里,他们关注非常不同的讨论话题——但都与政府和健康相关事件有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca5a/9510292/8c4e9cf46d05/13278_2022_949_Fig1_HTML.jpg

相似文献

1
Political polarization on Twitter during the COVID-19 pandemic: a case study in Brazil.
Soc Netw Anal Min. 2022;12(1):140. doi: 10.1007/s13278-022-00949-x. Epub 2022 Sep 23.
2
Investigating political polarization in India through the lens of Twitter.
Soc Netw Anal Min. 2022;12(1):97. doi: 10.1007/s13278-022-00939-z. Epub 2022 Jul 31.
3
Political polarization drives online conversations about COVID-19 in the United States.
Hum Behav Emerg Technol. 2020 Jul;2(3):200-211. doi: 10.1002/hbe2.202. Epub 2020 Jul 1.
4
COVID-19 and the 5G Conspiracy Theory: Social Network Analysis of Twitter Data.
J Med Internet Res. 2020 May 6;22(5):e19458. doi: 10.2196/19458.
6
Social Bots' Involvement in the COVID-19 Vaccine Discussions on Twitter.
Int J Environ Res Public Health. 2022 Jan 31;19(3):1651. doi: 10.3390/ijerph19031651.
7
Twitter Discussions and Emotions About the COVID-19 Pandemic: Machine Learning Approach.
J Med Internet Res. 2020 Nov 25;22(11):e20550. doi: 10.2196/20550.
8
Comparative analysis of social bots and humans during the COVID-19 pandemic.
J Comput Soc Sci. 2022;5(2):1409-1425. doi: 10.1007/s42001-022-00173-9. Epub 2022 Jun 30.

本文引用的文献

1
Botometer 101: social bot practicum for computational social scientists.
J Comput Soc Sci. 2022;5(2):1511-1528. doi: 10.1007/s42001-022-00177-5. Epub 2022 Aug 20.
3
Characterizing the roles of bots on Twitter during the COVID-19 infodemic.
J Comput Soc Sci. 2022;5(1):591-609. doi: 10.1007/s42001-021-00139-3. Epub 2021 Aug 30.
4
The nature, cause and consequence of COVID-19 panic among social media users in India.
Soc Netw Anal Min. 2021;11(1):53. doi: 10.1007/s13278-021-00750-2. Epub 2021 Jun 8.
5
Assessing the risks of 'infodemics' in response to COVID-19 epidemics.
Nat Hum Behav. 2020 Dec;4(12):1285-1293. doi: 10.1038/s41562-020-00994-6. Epub 2020 Oct 29.
6
The COVID-19 social media infodemic.
Sci Rep. 2020 Oct 6;10(1):16598. doi: 10.1038/s41598-020-73510-5.
7
Political polarization drives online conversations about COVID-19 in the United States.
Hum Behav Emerg Technol. 2020 Jul;2(3):200-211. doi: 10.1002/hbe2.202. Epub 2020 Jul 1.
8
The epic battle against coronavirus misinformation and conspiracy theories.
Nature. 2020 May;581(7809):371-374. doi: 10.1038/d41586-020-01452-z.
9
The pandemic of social media panic travels faster than the COVID-19 outbreak.
J Travel Med. 2020 May 18;27(3). doi: 10.1093/jtm/taaa031.
10
The spread of low-credibility content by social bots.
Nat Commun. 2018 Nov 20;9(1):4787. doi: 10.1038/s41467-018-06930-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验