Brum Pedro, Cândido Teixeira Matheus, Vimieiro Renato, Araújo Eric, Meira Wagner, Lobo Pappa Gisele
Computer Science Department, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Belo Horizonte, MG 31270-901 Brazil.
Computer Science Department, Universidade Federal de Lavras, Aquenta Sol, Lavras, MG 37200-900 Brazil.
Soc Netw Anal Min. 2022;12(1):140. doi: 10.1007/s13278-022-00949-x. Epub 2022 Sep 23.
The debate over the COVID-19 pandemic is constantly trending at online conversations since its beginning in 2019. The discussions in many social media platforms is related not only to health aspects of the disease, but also public policies and non-pharmacological measures to mitigate the spreading of the virus and propose alternative treatments. Divergent opinions regarding these measures are leading to heated discussions and polarization. Particularly in highly politically polarized countries, users tend to be divided in those in-favor or against government policies. In this work we present a computational method to analyze Twitter data and: (i) identify users with a high probability of being bots using only COVID-19 related messages; (ii) quantify the political polarization of the Brazilian general public in the context of the COVID-19 pandemic; (iii) analyze how bots tweet and affect political polarization. We collected over 100 million tweets from 26 April 2020 to 3 January 2021, and observed in general a highly polarized population (with polarization index varying from 0.57 to 0.86), which focuses on very different topics of discussions over the most polarized weeks-but all related to government and health-related events.
自2019年新冠疫情开始以来,关于它的争论在网络对话中一直占据热门趋势。许多社交媒体平台上的讨论不仅涉及该疾病的健康方面,还包括公共政策以及减轻病毒传播和提出替代治疗方法的非药物措施。关于这些措施的不同意见引发了激烈的讨论和两极分化。特别是在政治两极分化严重的国家,用户往往分为支持或反对政府政策的两派。在这项工作中,我们提出了一种计算方法来分析推特数据,并:(i)仅使用与新冠疫情相关的信息识别极有可能是机器人的用户;(ii)在新冠疫情背景下量化巴西普通民众的政治两极分化程度;(iii)分析机器人如何发推文以及影响政治两极分化。我们收集了从2020年4月26日到2021年1月3日的超过1亿条推文,总体上观察到一个两极分化程度很高的群体(两极分化指数从0.57到0.86不等),在两极分化最严重的几周里,他们关注非常不同的讨论话题——但都与政府和健康相关事件有关。