Nguyen Trung Hai, Tam Nguyen Minh, Tuan Mai Van, Zhan Peng, Vu Van V, Quang Duong Tuan, Ngo Son Tung
Laboratory of Theoretical and Computational Biophysics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
Chem Phys. 2023 Jan 1;564:111709. doi: 10.1016/j.chemphys.2022.111709. Epub 2022 Sep 26.
Inhibiting the biological activity of SARS-CoV-2 Mpro can prevent viral replication. In this context, a hybrid approach using knowledge- and physics-based methods was proposed to characterize potential inhibitors for SARS-CoV-2 Mpro. Initially, supervised machine learning (ML) models were trained to predict a ligand-binding affinity of ca. 2 million compounds with the correlation on a test set of . Atomistic simulations were then used to refine the outcome of the ML model. Using LIE/FEP calculations, nine compounds from the top 100 ML inhibitors were suggested to bind well to the protease with the domination of van der Waals interactions. Furthermore, the binding affinity of these compounds is also higher than that of nirmatrelvir, which was recently approved by the US FDA to treat COVID-19. In addition, the ligands altered the catalytic triad Cys145 - His41 - Asp187, possibly disturbing the biological activity of SARS-CoV-2.
抑制新型冠状病毒3C样蛋白酶(SARS-CoV-2 Mpro)的生物活性可阻止病毒复制。在此背景下,人们提出了一种结合基于知识和物理方法的混合方法,以表征SARS-CoV-2 Mpro的潜在抑制剂。最初,训练了监督机器学习(ML)模型来预测约200万种化合物的配体结合亲和力,并在测试集上进行相关性分析。然后使用原子模拟来优化ML模型的结果。通过线性相互作用能(LIE)/自由能微扰(FEP)计算,前100种ML抑制剂中的9种化合物被认为与蛋白酶结合良好,主要通过范德华相互作用。此外,这些化合物的结合亲和力也高于最近被美国食品药品监督管理局(US FDA)批准用于治疗COVID-19的奈玛特韦。此外,这些配体改变了催化三联体Cys145-His41-Asp187,可能会干扰SARS-CoV-2的生物活性。