Kidambi Raju Sekar, Ramaswamy Seethalakshmi, Eid Marwa M, Gopalan Sathiamoorthy, Karim Faten Khalid, Marappan Raja, Khafaga Doaa Sami
School of Computing, SASTRA Deemed University, Thanjavur 613401, India.
Department of Maths, SASHE, SASTRA Deemed University, Thanjavur 613401, India.
Bioengineering (Basel). 2023 Jul 24;10(7):880. doi: 10.3390/bioengineering10070880.
This study aims to develop a predictive model for SARS-CoV-2 using machine-learning techniques and to explore various feature selection methods to enhance the accuracy of predictions. A precise forecast of the SARS-CoV-2 respiratory infections spread can help with efficient planning and resource allocation. The proposed model utilizes stochastic regression to capture the virus transmission's stochastic nature, considering data uncertainties. Feature selection techniques are employed to identify the most relevant and informative features contributing to prediction accuracy. Furthermore, the study explores the use of neighbor embedding and Sammon mapping algorithms to visualize high-dimensional SARS-CoV-2 respiratory infection data in a lower-dimensional space, enabling better interpretation and understanding of the underlying patterns. The application of machine-learning techniques for predicting SARS-CoV-2 respiratory infections, the use of statistical measures in healthcare, including confirmed cases, deaths, and recoveries, and an analysis of country-wise dynamics of the pandemic using machine-learning models are used. Our analysis involves the performance of various algorithms, including neural networks (NN), decision trees (DT), random forests (RF), the Adam optimizer (AD), hyperparameters (HP), stochastic regression (SR), neighbor embedding (NE), and Sammon mapping (SM). A pre-processed and feature-extracted SARS-CoV-2 respiratory infection dataset is combined with ADHPSRNESM to form a new orchestration in the proposed model for a perfect prediction to increase the precision of accuracy. The findings of this research can contribute to public health efforts by enabling policymakers and healthcare professionals to make informed decisions based on accurate predictions, ultimately aiding in managing and controlling the SARS-CoV-2 pandemic.
本研究旨在使用机器学习技术开发一种针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的预测模型,并探索各种特征选择方法以提高预测准确性。对SARS-CoV-2呼吸道感染传播进行精确预测有助于高效规划和资源分配。所提出的模型利用随机回归来捕捉病毒传播的随机性,同时考虑数据的不确定性。采用特征选择技术来识别对预测准确性有最大贡献的最相关和信息丰富的特征。此外,该研究还探索使用邻域嵌入和 Sammon 映射算法在低维空间中可视化高维的SARS-CoV-2呼吸道感染数据,以便更好地解释和理解潜在模式。使用机器学习技术预测SARS-CoV-2呼吸道感染,运用包括确诊病例、死亡病例和康复病例在内的医疗保健统计指标,并使用机器学习模型分析疫情在各国的动态情况。我们的分析涉及各种算法的性能,包括神经网络(NN)、决策树(DT)、随机森林(RF)、Adam优化器(AD)、超参数(HP)、随机回归(SR)、邻域嵌入(NE)和 Sammon 映射(SM)。一个经过预处理和特征提取的SARS-CoV-2呼吸道感染数据集与ADHPSRNESM相结合,在所提出的模型中形成一种新的编排方式,以实现完美预测,提高准确性的精度。本研究的结果可为公共卫生工作做出贡献,使政策制定者和医疗保健专业人员能够基于准确的预测做出明智决策,最终有助于管理和控制SARS-CoV-2疫情。