Institute of Theoretical and Computational Physics and Department of Physics, University of Crete, Crete, Greece.
Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
J Hypertens. 2022 Dec 1;40(12):2494-2501. doi: 10.1097/HJH.0000000000003286. Epub 2022 Sep 27.
Hypertension is a major risk factor for cardiovascular disease (CVD), which often escapes the diagnosis or should be confirmed by several office visits. The ECG is one of the most widely used diagnostic tools and could be of paramount importance in patients' initial evaluation.
We used machine learning techniques based on clinical parameters and features derived from the ECG, to detect hypertension in a population without CVD. We enrolled 1091 individuals who were classified as hypertensive or normotensive, and trained a Random Forest model, to detect the existence of hypertension. We then calculated the values for the Shapley additive explanations (SHAP), a sophisticated feature importance analysis, to interpret each feature's role in the Random Forest's results.
Our Random Forest model was able to distinguish hypertensive from normotensive patients with accuracy 84.2%, specificity 78.0%, sensitivity 84.0% and area under the receiver-operating curve 0.89, using a decision threshold of 0.6. Age, BMI, BMI-adjusted Cornell criteria (BMI multiplied by RaVL+SV 3 ), R wave amplitude in aVL and BMI-modified Sokolow-Lyon voltage (BMI divided by SV 1 +RV 5 ), were the most important anthropometric and ECG-derived features in terms of the success of our model.
Our machine learning algorithm is effective in the detection of hypertension in patients using ECG-derived and basic anthropometric criteria. Our findings open new horizon in the detection of many undiagnosed hypertensive individuals who have an increased CVD risk.
高血压是心血管疾病(CVD)的一个主要危险因素,通常会被漏诊或需要通过多次就诊来确诊。心电图是最广泛使用的诊断工具之一,在患者的初始评估中可能具有至关重要的作用。
我们使用基于临床参数和从心电图中提取的特征的机器学习技术,在没有 CVD 的人群中检测高血压。我们纳入了 1091 名被分类为高血压或正常血压的个体,并训练了一个随机森林模型来检测高血压的存在。然后,我们计算了 Shapley 加法解释(SHAP)的值,这是一种复杂的特征重要性分析,以解释每个特征在随机森林结果中的作用。
我们的随机森林模型能够以 84.2%的准确率、78.0%的特异性、84.0%的敏感性和 0.89 的接收者操作特征曲线下面积,将高血压患者与正常血压患者区分开来,使用的决策阈值为 0.6。年龄、BMI、BMI 调整后的 Cornell 标准(BMI 乘以 RaVL+SV3)、aVL 中的 R 波振幅和 BMI 修正的 Sokolow-Lyon 电压(BMI 除以 SV1+RV5)是我们模型成功的最重要的人体测量学和心电图衍生特征。
我们的机器学习算法在使用心电图衍生和基本人体测量标准检测高血压患者方面是有效的。我们的发现为检测许多未被诊断的高血压患者开辟了新的前景,这些患者的 CVD 风险增加。