Sau Arunashis, Barker Joseph, Pastika Libor, Sieliwonczyk Ewa, Patlatzoglou Konstantinos, McGurk Kathryn A, Peters Nicholas S, O'Regan Declan P, Ware James S, Kramer Daniel B, Waks Jonathan W, Ng Fu Siong
National Heart and Lung Institute, Imperial College London, United Kingdom.
Department of Cardiology, Imperial College Healthcare NHS Trust, London, United Kingdom.
JAMA Cardiol. 2025 Mar 1;10(3):214-223. doi: 10.1001/jamacardio.2024.4796.
Hypertension underpins significant global morbidity and mortality. Early lifestyle intervention and treatment are effective in reducing adverse outcomes. Artificial intelligence-enhanced electrocardiography (AI-ECG) has been shown to identify a broad spectrum of subclinical disease and may be useful for predicting incident hypertension.
To develop an AI-ECG risk estimator (AIRE) to predict incident hypertension (AIRE-HTN) and stratify risk for hypertension-associated adverse outcomes.
DESIGN, SETTING, AND PARTICIPANTS: This was a development and external validation prognostic cohort study conducted at Beth Israel Deaconess Medical Center (BIDMC) in Boston, Massachusetts, a secondary care setting. External validation was conducted in the UK Biobank (UKB), a UK-based volunteer cohort. AIRE-HTN was trained and tested to predict incident hypertension using routinely collected ECGs from patients at BIDMC between 2014 and 2023. The algorithm was then evaluated to risk stratify patients for hypertension- associated adverse outcomes and externally validated on UKB data between 2014 and 2022 for both incident hypertension and risk stratification.
AIRE-HTN, which uses a residual convolutional neural network architecture with a discrete-time survival loss function, was trained to predict incident hypertension.
AIRE-HTN was trained on 1 163 401 ECGs from 189 539 patients (mean [SD] age, 57.7 [18.7] years; 98 747 female [52.1%]) at BIDMC. A total of 19 423 BIDMC patients composed the test set and were evaluated for incident hypertension. From the UKB, AIRE-HTN was tested on 65 610 ECGs from same number of participants (mean [SD] age, 65.4 [7.9] years; 33 785 female [51.5%]). A total of 35 806 UKB patients were evaluated for incident hypertension. AIRE-HTN predicted incident hypertension (BIDMC: n = 6446 [33%] events; C index, 0.70; 95% CI, 0.69-0.71; UKB: n = 1532 [4%] events; C index, 0.70; 95% CI, 0.69-0.71). Performance was maintained in individuals without left ventricular hypertrophy and those with normal ECGs (C indices, 0.67-0.72). AIRE-HTN was significantly additive to existing clinical risk factors in predicting incident hypertension (continuous net reclassification index, BIDMC: 0.44; 95% CI, 0.33-0.53; UKB: 0.32; 95% CI, 0.23-0.37). In adjusted Cox models, AIRE-HTN score was an independent predictor of cardiovascular death (hazard ratio [HR] per standard deviation, 2.24; 95% CI, 1.67-3.00) and stratified risk for heart failure (HR, 2.60; 95% CI, 2.22-3.04), myocardial infarction (HR, 3.13; 95% CI, 2.55-3.83), ischemic stroke (HR, 1.23; 95% CI, 1.11-1.37), and chronic kidney disease (HR, 1.89; 95% CI, 1.68-2.12), beyond traditional risk factors.
Results suggest that AIRE-HTN, an AI-ECG model, can predict incident hypertension and identify patients at risk of hypertension-related adverse events, beyond conventional clinical risk factors.
高血压是全球重大发病和死亡的基础。早期生活方式干预和治疗对于降低不良后果有效。人工智能增强心电图(AI-ECG)已被证明可识别广泛的亚临床疾病,可能有助于预测高血压的发生。
开发一种AI-ECG风险评估器(AIRE)以预测高血压的发生(AIRE-HTN)并对高血压相关不良后果的风险进行分层。
设计、设置和参与者:这是一项在马萨诸塞州波士顿的贝斯以色列女执事医疗中心(BIDMC)进行的二级医疗环境中的开发和外部验证预后队列研究。在英国生物银行(UKB)(一个基于英国的志愿者队列)中进行了外部验证。使用2014年至2023年期间BIDMC患者常规收集的心电图对AIRE-HTN进行训练和测试以预测高血压的发生。然后对该算法进行评估,以对高血压相关不良后果的患者进行风险分层,并在2014年至2022年期间的UKB数据上对高血压的发生和风险分层进行外部验证。
使用具有离散时间生存损失函数的残差卷积神经网络架构的AIRE-HTN被训练以预测高血压的发生。
AIRE-HTN在BIDMC对来自189539名患者(平均[标准差]年龄,57.7[18.7]岁;98747名女性[52.1%])的1163401份心电图进行了训练。共有19423名BIDMC患者组成测试集并接受高血压发生情况评估。在UKB中,AIRE-HTN对来自相同数量参与者(平均[标准差]年龄,65.4[7.9]岁;33785名女性[51.5%])的65610份心电图进行了测试。共有35806名UKB患者接受高血压发生情况评估。AIRE-HTN预测了高血压的发生(BIDMC:n = 6446[33%]事件;C指数,0.70;95%置信区间,0.69 - 0.71;UKB:n = 1532[4%]事件;C指数,0.70;95%置信区间,0.69 - 0.71)。在无左心室肥厚的个体和心电图正常的个体中性能得以维持(C指数,0.67 - 0.72)。在预测高血压的发生方面,AIRE-HTN对现有临床风险因素具有显著的附加作用(连续净重新分类指数,BIDMC:0.44;95%置信区间,0.33 - 0.53;UKB:0.32;95%置信区间,0.23 - 0.37)。在调整后的Cox模型中,AIRE-HTN评分是心血管死亡的独立预测因素(每标准差风险比[HR],2.24;95%置信区间,1.67 - 3.00),并对心力衰竭(HR,2.60;95%置信区间,2.22 - 3.04)、心肌梗死(HR,3.13;95%置信区间,2.55 - 3.83)、缺血性中风(HR,1.23;95%置信区间,1.11 - 1.37)和慢性肾脏病(HR,1.89;95%置信区间,1.68 - 2.12)的风险进行了分层,超越了传统风险因素。
结果表明,AI-ECG模型AIRE-HTN能够预测高血压的发生,并识别出有高血压相关不良事件风险的患者,超越了传统临床风险因素。