Och Mauro, Anastasiou Konstantinos, Leontis Ioannis, Zemignani Giulia Zoe, Palczynski Pawel, Mostaed Ali, Sokolikova Maria S, Alexeev Evgeny M, Bai Haoyu, Tartakovskii Alexander I, Lischner Johannes, Nellist Peter D, Russo Saverio, Mattevi Cecilia
Department of Materials, Imperial College London, London, SW7 2AZ, UK.
Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK.
Nanoscale. 2022 Nov 3;14(42):15651-15662. doi: 10.1039/d2nr03233c.
Tuning the charge transport properties of two-dimensional transition metal dichalcogenides (TMDs) is pivotal to their future device integration in post-silicon technologies. To date, co-doping of TMDs during growth still proves to be challenging, and the synthesis of doped WSe, an otherwise ambipolar material, has been mainly limited to p-doping. Here, we demonstrate the synthesis of high-quality n-type monolayered WSe flakes using a solid-state precursor for Se, zinc selenide. n-Type transport has been reported with prime electron mobilities of up to 10 cm V s. We also demonstrate the tuneability of doping to p-type transport with hole mobilities of 50 cm V s after annealing in air. n-Doping has been attributed to the presence of Zn adatoms on the WSe flakes as revealed by X-ray photoelectron spectroscopy (XPS), spatially resolved time of flight secondary ion mass spectroscopy (SIMS) and angular dark-field scanning transmission electron microscopy (AD-STEM) characterization of WSe flakes. Monolayer WSe flakes exhibit a sharp photoluminescence (PL) peak at room temperature and highly uniform emission across the entire flake area, indicating a high degree of crystallinity of the material. This work provides new insight into the synthesis of TMDs with charge carrier control, to pave the way towards post-silicon electronics.
调整二维过渡金属二硫属化物(TMDs)的电荷传输特性对于它们未来在后硅技术中的器件集成至关重要。迄今为止,在生长过程中对TMDs进行共掺杂仍然具有挑战性,并且对于原本为双极性材料的掺杂WSe的合成主要局限于p型掺杂。在此,我们展示了使用固态硒前驱体硒化锌合成高质量的n型单层WSe薄片。据报道,n型传输的主要电子迁移率高达10 cm² V⁻¹ s⁻¹。我们还展示了在空气中退火后,掺杂可调节为p型传输,空穴迁移率为50 cm² V⁻¹ s⁻¹。通过X射线光电子能谱(XPS)、空间分辨飞行时间二次离子质谱(SIMS)以及WSe薄片的角暗场扫描透射电子显微镜(AD-STEM)表征发现,n型掺杂归因于WSe薄片上存在锌吸附原子。单层WSe薄片在室温下表现出尖锐的光致发光(PL)峰,并且在整个薄片区域发射高度均匀,表明该材料具有高度的结晶度。这项工作为通过电荷载流子控制合成TMDs提供了新的见解,为后硅电子学铺平了道路。