Suppr超能文献

用于人机接口的手势识别:一种低功耗生物启发式臂章。

Hand Gestures Recognition for Human-Machine Interfaces: A Low-Power Bio-Inspired Armband.

作者信息

Mongardi Andrea, Rossi Fabio, Prestia Andrea, Ros Paolo Motto, Roch Massimo Ruo, Martina Maurizio, Demarchi Danilo

出版信息

IEEE Trans Biomed Circuits Syst. 2022 Dec;16(6):1348-1365. doi: 10.1109/TBCAS.2022.3211424. Epub 2023 Feb 14.

Abstract

Hand gesture recognition has recently increased its popularity as Human-Machine Interface (HMI) in the biomedical field. Indeed, it can be performed involving many different non-invasive techniques, e.g., surface ElectroMyoGraphy (sEMG) or PhotoPlethysmoGraphy (PPG). In the last few years, the interest demonstrated by both academia and industry brought to a continuous spawning of commercial and custom wearable devices, which tried to address different challenges in many application fields, from tele-rehabilitation to sign language recognition. In this work, we propose a novel 7-channel sEMG armband, which can be employed as HMI for both serious gaming control and rehabilitation support. In particular, we designed the prototype focusing on the capability of our device to compute the Average Threshold Crossing (ATC) parameter, which is evaluated by counting how many times the sEMG signal crosses a threshold during a fixed time duration (i.e., 130 ms), directly on the wearable device. Exploiting the event-driven characteristic of the ATC, our armband is able to accomplish the on-board prediction of common hand gestures requiring less power w.r.t. state of the art devices. At the end of an acquisition campaign that involved the participation of 26 people, we obtained an average classifier accuracy of 91.9% when aiming to recognize in real time 8 active hand gestures plus the idle state. Furthermore, with 2.92 mA of current absorption during active functioning and 1.34 ms prediction latency, this prototype confirmed our expectations and can be an appealing solution for long-term (up to 60 h) medical and consumer applications.

摘要

作为生物医学领域中的人机接口(HMI),手势识别近来越来越受到欢迎。事实上,它可以通过许多不同的非侵入性技术来实现,例如表面肌电图(sEMG)或光电容积脉搏波描记法(PPG)。在过去几年中,学术界和工业界都表现出了浓厚的兴趣,催生了一系列商业和定制可穿戴设备不断涌现,这些设备试图应对从远程康复到手语识别等许多应用领域中的不同挑战。在这项工作中,我们提出了一种新型的7通道sEMG臂带,可以用作严肃游戏控制和康复支持中的人机接口(HMI)。特别是,我们在设计该原型时重点关注了我们设备计算平均阈值穿越(ATC)参数(通过计算sEMG信号在固定持续时间(即130毫秒)内穿越阈值的次数来评估)的能力,并直接在可穿戴设备上进行评估。利用ATC的事件驱动特性,相对于现有技术设备,我们的臂带能够以更低的功耗完成常见手势的板载预测。在一项有26人参与的数据采集活动结束时,当目标是实时识别8种主动手势加空闲状态时,我们获得了平均91.9%的分类准确率.此外,该原型在运行时的电流吸收为2.92 mA,预测延迟为1.34 ms,证实了我们的预期,并且对于长期(长达60小时)的医疗和消费应用来说可能是一个有吸引力解决方案.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验