IEEE Trans Neural Syst Rehabil Eng. 2022;30:2845-2855. doi: 10.1109/TNSRE.2022.3211276. Epub 2022 Oct 20.
The continuous decoding of human movement intention based on electroencephalogram (EEG) signals is valuable for developing a more natural motor augmented or assistive system instead of its discrete classifications. The classic center-out paradigm has been widely used to study discrete and continuous hand movement parameter decoding. However, when applying it in studying continuous movement decoding, the classic paradigm needs to be improved to increase the decoding performance, especially generalization performance. In this paper, we first discuss the limitations of the classic center-out paradigm in exploring the hand movement's continuous decoding. Then, an improved paradigm is proposed to enhance the continuous decoding performance. Besides, an adaptive decoder-ensemble framework is developed for continuous kinematic parameter decoding. Finally, with the improved center-out paradigm and the ensemble decoding framework, the average Pearson's correlation coefficients between the predicted and recorded movement kinematic parameters improve significantly by about 75 percent for the directional parameters and about 10 percent for the non-directional parameters. Furthermore, its generalization performance improves significantly by about 20 percent for the directional parameters. This study indicates the advantage of the improved paradigm in predicting the hand movement's kinematic information from low-frequency scalp EEG signals. It can advance the applications of the noninvasive motor brain-computer interface (BCI) in rehabilitation, daily assistance, and human augmentation areas.
基于脑电图 (EEG) 信号的人类运动意图的连续解码对于开发更自然的运动增强或辅助系统很有价值,而不是离散分类。经典的中心-out 范式已被广泛用于研究离散和连续手部运动参数解码。然而,当将其应用于连续运动解码研究时,经典范式需要改进以提高解码性能,特别是泛化性能。在本文中,我们首先讨论了经典中心-out 范式在探索手运动连续解码方面的局限性。然后,提出了一种改进的范式来增强连续解码性能。此外,还开发了一种自适应解码器集成框架,用于连续运动学参数解码。最后,通过改进的中心-out 范式和集成解码框架,预测和记录的运动运动学参数之间的平均 Pearson 相关系数显著提高,方向参数提高约 75%,非方向参数提高约 10%。此外,方向参数的泛化性能提高了约 20%。这项研究表明了改进范式在从低频头皮 EEG 信号预测手部运动运动信息方面的优势。它可以推进非侵入性运动脑机接口 (BCI) 在康复、日常辅助和人类增强领域的应用。