Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria.
Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, United Kingdom.
Sci Rep. 2019 Jul 31;9(1):11113. doi: 10.1038/s41598-019-47434-8.
Chemometric methods and correlation of spectroscopic or spectrometric data with bioactivity results are known to improve dereplication in classical bio-guided isolation approaches. However, in drug discovery from natural sources the isolation of bioactive constituents from a crude extract containing close structural analogues remains a significant challenge. This study is a H NMR-MS workflow named ELINA (Eliciting Nature's Activities) which is based on statistical heterocovariance analysis (HetCA) of H NMR spectra detecting chemical features that are positively ("hot") or negatively ("cold") correlated with bioactivity prior to any isolation. ELINA is exemplified in the discovery of steroid sulfatase (STS) inhibiting lanostane triterpenes (LTTs) from a complex extract of the polypore fungus Fomitopsis pinicola.
化学计量学方法和光谱或分光光度数据与生物活性结果的相关性,已知可以提高经典生物导向分离方法中的去重。然而,在天然产物药物发现中,从含有紧密结构类似物的粗提物中分离生物活性成分仍然是一个重大挑战。本研究提出了一种基于统计异方差分析(HetCA)的'H NMR-MS 工作流程,称为 ELINA(激发自然活性),它可以在任何分离之前,通过'H NMR 光谱检测与生物活性呈正相关("热")或负相关("冷")的化学特征。ELINA 用于从多孔菌 Fomitopsis pinicola 的复杂提取物中发现抑制甾体硫酸酯酶(STS)的羊毛甾烷三萜(LTT)。