DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico.
Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City 07360, Mexico.
Biomolecules. 2023 Jan 14;13(1):176. doi: 10.3390/biom13010176.
Drug-induced liver injury (DILI) is the principal reason for failure in developing drug candidates. It is the most common reason to withdraw from the market after a drug has been approved for clinical use. In this context, data from animal models, liver function tests, and chemical properties could complement each other to understand DILI events better and prevent them. Since the chemical space concept improves decision-making drug design related to the prediction of structure-property relationships, side effects, and polypharmacology drug activity (uniquely mentioning the most recent advances), it is an attractive approach to combining different phenomena influencing DILI events (e.g., individual "chemical spaces") and exploring all events simultaneously in an integrated analysis of the DILI-relevant chemical space. However, currently, no systematic methods allow the fusion of a collection of different chemical spaces to collect different types of data on a unique chemical space representation, namely "consensus chemical space." This study is the first report that implements data fusion to consider different criteria simultaneously to facilitate the analysis of DILI-related events. In particular, the study highlights the importance of analyzing together in vitro and chemical data (e.g., topology, bond order, atom types, presence of rings, ring sizes, and aromaticity of compounds encoded on RDKit fingerprints). These properties could be aimed at improving the understanding of DILI events.
药物性肝损伤(DILI)是导致候选药物开发失败的主要原因。这也是药物获得临床批准后被撤出市场的最常见原因。在这种情况下,来自动物模型、肝功能测试和化学特性的数据可以相互补充,以更好地了解 DILI 事件并预防它们。由于化学空间概念可以改善与预测结构-性质关系、副作用和多效性药物活性相关的决策药物设计(特别提到了最近的进展),因此,将影响 DILI 事件的不同现象(例如,个体“化学空间”)结合起来,并在对 DILI 相关化学空间的综合分析中同时探索所有事件,是一种很有吸引力的方法。然而,目前没有系统的方法可以将不同的化学空间集合融合在一起,以在独特的化学空间表示形式上收集不同类型的数据,即“共识化学空间”。本研究首次报告了实施数据融合以同时考虑不同标准的方法,从而有助于分析 DILI 相关事件。特别是,该研究强调了同时分析体外和化学数据(例如,拓扑、键序、原子类型、化合物中环的存在、环的大小和芳香性,这些特性可以编码在 RDKit 指纹中)的重要性。这些特性可以有助于加深对 DILI 事件的理解。