Suppr超能文献

中风分离网络解码阅读网络。

Stroke disconnectome decodes reading networks.

机构信息

Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France.

Donders Centre for Cognition, Radboud University, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands.

出版信息

Brain Struct Funct. 2022 Dec;227(9):2897-2908. doi: 10.1007/s00429-022-02575-x. Epub 2022 Oct 3.

Abstract

Cognitive functional neuroimaging has been around for over 30 years and has shed light on the brain areas relevant for reading. However, new methodological developments enable mapping the interaction between functional imaging and the underlying white matter networks. In this study, we used such a novel method, called the disconnectome, to decode the reading circuitry in the brain. We used the resulting disconnection patterns to predict a typical lesion that would lead to reading deficits after brain damage. Our results suggest that white matter connections critical for reading include fronto-parietal U-shaped fibres and the vertical occipital fasciculus (VOF). The lesion most predictive of a reading deficit would impinge on the left temporal, occipital, and inferior parietal gyri. This novel framework can systematically be applied to bridge the gap between the neuropathology of language and cognitive neuroscience.

摘要

认知功能神经影像学已经存在了 30 多年,它揭示了与阅读相关的大脑区域。然而,新的方法学发展使得能够映射功能成像与潜在的白质网络之间的相互作用。在这项研究中,我们使用了一种称为“disconnectome”的新方法来解码大脑中的阅读回路。我们使用得到的断开连接模式来预测导致脑损伤后阅读缺陷的典型病变。我们的结果表明,阅读过程中至关重要的白质连接包括额顶 U 形纤维和垂直枕额束(VOF)。最能预测阅读缺陷的病变会影响左侧颞叶、枕叶和下顶叶回。这种新的框架可以系统地应用于弥合语言神经病理学和认知神经科学之间的差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ea8/9653326/a4a7739c2e29/429_2022_2575_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验