Suppr超能文献

基于布尔网络的大脑动力学建模。

Modelling brain dynamics by Boolean networks.

机构信息

Department of Mechanics, Energy and Management Engineering, University of Calabria, Rende, Italy.

Laboratory of Cognitive Science and Mathematical Modelling, Department of Physics, University of Calabria, Rende, Italy.

出版信息

Sci Rep. 2022 Oct 3;12(1):16543. doi: 10.1038/s41598-022-20979-x.

Abstract

Understanding the relationship between brain architecture and brain function is a central issue in neuroscience. We modeled realistic spatio-temporal patterns of brain activity on a human connectome with a Boolean networks model with the aim of computationally replicating certain cognitive functions as they emerge from the standardization of many fMRI studies, identified as patterns of human brain activity. Results from the analysis of simulation data, carried out for different parameters and initial conditions identified many possible paths in the space of parameters of these network models, with normal (ordered asymptotically constant patterns), chaotic (oscillating or disordered) but also highly organized configurations, with countless spatial-temporal patterns. We interpreted these results as routes to chaos, permanence of the systems in regimes of complexity, and ordered stationary behavior, associating these dynamics to cognitive processes. The most important result of this work is the study of emergent neural circuits, i.e., configurations of areas that synchronize over time, both locally and globally, determining the emergence of computational analogues of cognitive processes, which may or may not be similar to the functioning of biological brain. Furthermore, results put in evidence the creation of how the brain creates structures of remote communication. These structures have hierarchical organization, where each level allows for the emergence of brain organizations which behave at the next superior level. Taken together these results allow the interplay of dynamical and topological roots of the multifaceted brain dynamics to be understood.

摘要

理解大脑结构和大脑功能之间的关系是神经科学的一个核心问题。我们使用具有布尔网络模型的人类连接组来对大脑活动的真实时空模式进行建模,目的是计算复制某些认知功能,因为这些功能是从许多 fMRI 研究的标准化中出现的,被确定为人类大脑活动的模式。对模拟数据的分析结果表明,在这些网络模型的参数空间中,有许多可能的路径,包括正常(渐近有序的恒定模式)、混沌(振荡或无序)但也高度有序的配置,具有无数的时空模式。我们将这些结果解释为通向混沌的途径,系统在复杂性的规则下保持稳定,并表现出有序的稳定行为,将这些动力学与认知过程联系起来。这项工作的最重要结果是对新兴神经电路的研究,即随着时间的推移,区域同步的配置,无论是局部还是全局,确定了认知过程的计算模拟的出现,这些模拟可能与生物大脑的功能相似,也可能不相似。此外,结果表明了大脑如何创造远程通信结构。这些结构具有层次化的组织,每个层次都允许出现在下一个更高层次上表现的大脑组织。这些结果共同揭示了大脑动态的多方面的动力和拓扑根源之间的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e81/9529940/97906107f5d0/41598_2022_20979_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验