Suppr超能文献

基于深度学习的利用来自其他关节上下文信息的自动骨破坏评估系统。

Deep learning-based automatic-bone-destruction-evaluation system using contextual information from other joints.

机构信息

Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.

Department of Advanced Information Technology, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.

出版信息

Arthritis Res Ther. 2022 Oct 3;24(1):227. doi: 10.1186/s13075-022-02914-7.

Abstract

BACKGROUND

X-ray images are commonly used to assess the bone destruction of rheumatoid arthritis. The purpose of this study is to propose an automatic-bone-destruction-evaluation system fully utilizing deep neural networks (DNN). This system detects all target joints of the modified Sharp/van der Heijde score (SHS) from a hand X-ray image. It then classifies every target joint as intact (SHS = 0) or non-intact (SHS ≥ 1).

METHODS

We used 226 hand X-ray images of 40 rheumatoid arthritis patients. As for detection, we used a DNN model called DeepLabCut. As for classification, we built four classification models that classify the detected joint as intact or non-intact. The first model classifies each joint independently, whereas the second model does it while comparing the same contralateral joint. The third model compares the same joint group (e.g., the proximal interphalangeal joints) of one hand and the fourth model compares the same joint group of both hands. We evaluated DeepLabCut's detection performance and classification models' performances. The classification models' performances were compared to three orthopedic surgeons.

RESULTS

Detection rates for all the target joints were 98.0% and 97.3% for erosion and joint space narrowing (JSN). Among the four classification models, the model that compares the same contralateral joint showed the best F-measure (0.70, 0.81) and area under the curve of the precision-recall curve (PR-AUC) (0.73, 0.85) regarding erosion and JSN. As for erosion, the F-measure and PR-AUC of this model were better than the best of the orthopedic surgeons.

CONCLUSIONS

The proposed system was useful. All the target joints were detected with high accuracy. The classification model that compared the same contralateral joint showed better performance than the orthopedic surgeons regarding erosion.

摘要

背景

X 射线图像常用于评估类风湿关节炎的骨破坏。本研究旨在提出一种充分利用深度学习网络(DNN)的自动骨破坏评估系统。该系统从手部 X 射线图像中检测改良 Sharp/van der Heijde 评分(SHS)的所有目标关节。然后,它将每个目标关节分类为完整(SHS=0)或不完整(SHS≥1)。

方法

我们使用了 40 例类风湿关节炎患者的 226 张手部 X 射线图像。在检测方面,我们使用了一种称为 DeepLabCut 的 DNN 模型。在分类方面,我们构建了四个分类模型,将检测到的关节分类为完整或不完整。第一个模型对每个关节进行独立分类,而第二个模型则在比较相同的对侧关节时进行分类。第三个模型比较一只手的相同关节组(如近端指间关节),第四个模型比较两只手的相同关节组。我们评估了 DeepLabCut 的检测性能和分类模型的性能。将分类模型的性能与三位矫形外科医生进行了比较。

结果

所有目标关节的检测率均为 98.0%和 97.3%,用于侵蚀和关节间隙变窄(JSN)。在四个分类模型中,比较相同对侧关节的模型在侵蚀和 JSN 方面具有最佳的 F 度量(0.70,0.81)和精度-召回曲线下面积(PR-AUC)(0.73,0.85)。在侵蚀方面,该模型的 F 度量和 PR-AUC 优于最佳矫形外科医生的表现。

结论

所提出的系统是有用的。所有目标关节均被高精度检测到。在侵蚀方面,比较相同对侧关节的分类模型的性能优于矫形外科医生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c44/9528108/0fc0b84faa24/13075_2022_2914_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验