Suppr超能文献

新型α-氨基膦酸酯衍生物的合成、理论计算、分子对接及对严重急性呼吸综合征冠状病毒2潜在抑制作用的计算机模拟预测

Novel α-aminophosphonate derivates synthesis, theoretical calculation, Molecular docking, and in silico prediction of potential inhibition of SARS-CoV-2.

作者信息

Kerkour Rachida, Chafai Nadjib, Moumeni Ouahiba, Chafaa Saleh

机构信息

Laboratory of Electrochemistry of Molecular Materials and Complex (LEMMC), Department of Process Engineering, Faculty of Technology, University of Ferhat ABBAS Sétif-1, El Maabouda 19000 Setif, Algeria.

Department of Science and Technology, Institute of Science and Technology, University of Abdelhafidh Boussouf, Mila, Algeria.

出版信息

J Mol Struct. 2023 Jan 15;1272:134196. doi: 10.1016/j.molstruc.2022.134196. Epub 2022 Sep 28.

Abstract

Using the Density Functional Theory approach and in silico docking, the current study analyzes the inhibitory role of a novel α-aminophosphonate derivative against SARS-CoV-2 major protease (Mpro) and RNA dependent RNA polymerase (RdRp) of SARS-CoV-2. FT-IR, UV-Vis, and NMR (1H, 13C, 31P) approaches were used to produce and confirm the novel α-aminophosphonate derivative. The quantum chemical parameters were detremined, and the reactivity of the synthesized molecule was discussed using DFT at the B3LYP/6-31G(d,p) level. In addition, the inhibitory function of the investigated derivative for SARS-CoV-2 major protease (Mpro) and RNA dependent RNA polymerase (RdRp) was estimated using in silico docking. These discoveries could pave the way for novel SARS-CoV-2 therapies to develop and be tested.

摘要

本研究采用密度泛函理论方法和计算机对接技术,分析了一种新型α-氨基膦酸酯衍生物对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)主要蛋白酶(Mpro)和RNA依赖性RNA聚合酶(RdRp)的抑制作用。利用傅里叶变换红外光谱(FT-IR)、紫外可见光谱(UV-Vis)和核磁共振(NMR,包括1H、13C、31P)方法制备并确认了该新型α-氨基膦酸酯衍生物。确定了量子化学参数,并在B3LYP/6-31G(d,p)水平上使用密度泛函理论(DFT)讨论了合成分子的反应活性。此外,通过计算机对接评估了所研究衍生物对SARS-CoV-2主要蛋白酶(Mpro)和RNA依赖性RNA聚合酶(RdRp)的抑制功能。这些发现可为新型SARS-CoV-2治疗方法的开发和测试铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6a/9519172/24d3d929d35c/ga1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验