Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States.
Department of Chemistry, Binghamton University, Binghamton, New York13902, United States.
J Am Chem Soc. 2022 Oct 19;144(41):19097-19105. doi: 10.1021/jacs.2c08285. Epub 2022 Oct 4.
Selective functionalization of aliphatic C-H bonds, ubiquitous in molecular structures, could allow ready access to diverse chemical products. While enzymatic oxygenation of C-H bonds is well established, the analogous enzymatic nitrogen functionalization is still unknown; nature is reliant on preoxidized compounds for nitrogen incorporation. Likewise, synthetic methods for selective nitrogen derivatization of unbiased C-H bonds remain elusive. In this work, new-to-nature heme-containing nitrene transferases were used as starting points for the directed evolution of enzymes to selectively aminate and amidate unactivated C(sp)-H sites. The desymmetrization of methyl- and ethylcyclohexane with divergent site selectivity is offered as demonstration. The evolved enzymes in these lineages are highly promiscuous and show activity toward a wide array of substrates, providing a foundation for further evolution of nitrene transferase function. Computational studies and kinetic isotope effects (KIEs) are consistent with a stepwise radical pathway involving an irreversible, enantiodetermining hydrogen atom transfer (HAT), followed by a lower-barrier diastereoselectivity-determining radical rebound step. In-enzyme molecular dynamics (MD) simulations reveal a predominantly hydrophobic pocket with favorable dispersion interactions with the substrate. By offering a direct path from saturated precursors, these enzymes present a new biochemical logic for accessing nitrogen-containing compounds.
选择性地官能化脂肪族 C-H 键在分子结构中普遍存在,可以方便地获得各种化学产品。尽管酶促氧化 C-H 键的方法已经很成熟,但类似的酶促氮官能化方法仍然未知;自然界依赖于预氧化的化合物来进行氮的掺入。同样,用于选择性氮衍生化无偏见 C-H 键的合成方法仍然难以捉摸。在这项工作中,使用新型天然血红素含氮转移酶作为起点,通过定向进化酶来选择性地胺化和酰胺化未活化的 C(sp)-H 位点。提供甲基和乙基环己烷的不对称去对称化作为证明。这些谱系中的进化酶具有高度的混杂性,对广泛的底物表现出活性,为进一步进化氮转移酶功能提供了基础。计算研究和动力学同位素效应 (KIE) 与逐步自由基途径一致,涉及不可逆的、确定对映体的氢原子转移 (HAT),然后是较低势垒的非对映选择性确定的自由基回弹步骤。酶内分子动力学 (MD) 模拟揭示了一个主要的疏水性口袋,与底物具有有利的分散相互作用。通过提供从饱和前体的直接途径,这些酶为获取含氮化合物提供了新的生化逻辑。