Suppr超能文献

抑郁症中的步态:过去20年研究趋势的文献计量分析与知识图谱

Gait in depression: a bibliometric analysis and knowledge mapping of research trends over the past 20 years.

作者信息

Kan Shao-Kui, Chen Nuan-Nuan, Peng Bo, Zhang Ying-Li

机构信息

Depressive Disorders Ward I, Shenzhen Kangning Hospital/Shenzhen Mental Health Center/Shenzhen Clinical Research Center for Mental Disorders, Shenzhen, China.

Geriatric Psychiatry Cognitive Disorder Ward, Shenzhen Kangning Hospital/Shenzhen Mental Health Center/Shenzhen Clinical Research Center for Mental Disorders, Shenzhen, China.

出版信息

Front Psychiatry. 2025 Aug 20;16:1457176. doi: 10.3389/fpsyt.2025.1457176. eCollection 2025.

Abstract

BACKGROUND

Depression carries a high risk of suicide, with many individuals failing to receive treatment due to diagnostic challenges and stigma. Gait is linked to depression, underscoring the importance of gait analysis in the diagnosis and treatment of depression. However, comprehensive and objective evaluations of the current research on gait in depression are lacking. This study aims to use bibliometric analysis and knowledge mapping to clarify research trends and status.

OBJECTIVE

This study employs bibliometric analysis to investigate gait in depression, summarizing historical and current trends while predicting future directions. This analysis will aid researchers and policymakers in understanding evolving trends and prioritizing research resources effectively.

METHODS

We conducted a computer-based search of the Web of Science core collection to identify articles and reviews related to depression and gait. Bibliometric analysis, involving the analysis of aspects such as countries or regions, institutions, authors, journals, keywords, and references, was performed using Excel 365, CiteSpace, and VOSViewer.

RESULTS

The analysis included a total of 848 publications from 2005 to 2024. The results showed a phased increase in publications, peaking in 2020 with 102 publications, followed by a gradual decline. Citations in this field showed a yearly increase, peaking in 2022 with 3920 citations before subsequently declining. The United States was identified as the most productive and influential country in this field, with the highest number of publications and citations. They have the institutions with the highest publications and citations. Leading authors in this field include Verghese Joe, Shimada Hiroyuki; and Rochester Lynn. Key journals include BMC Geriatrics, Journals of Gerontology Series and Medical Sciences, and Journal of the American Geriatrics Society. Frequently mentioned keywords in this field are depression, gait, gait speed, older adults, and dementia. Identification of distinctive gait patterns in depression, gait characteristics in the elderly, association between gait and cognitive decline, and interventions for abnormal gait constitute current research forefronts in this domain.

CONCLUSIONS

This study is the first to utilize bibliometrics to visualize research in the field of gait-related depression. It reveals research trends and frontiers, providing valuable references for scholars seeking important research topics and potential collaborators.

摘要

背景

抑郁症具有很高的自杀风险,许多患者因诊断困难和污名化而未能接受治疗。步态与抑郁症有关,这凸显了步态分析在抑郁症诊断和治疗中的重要性。然而,目前关于抑郁症步态的研究缺乏全面、客观的评估。本研究旨在通过文献计量分析和知识图谱来阐明研究趋势和现状。

目的

本研究采用文献计量分析方法来研究抑郁症中的步态,总结历史和当前趋势,同时预测未来方向。该分析将帮助研究人员和政策制定者了解不断变化的趋势,并有效地确定研究资源的优先级。

方法

我们在科学网核心合集上进行了基于计算机的搜索,以识别与抑郁症和步态相关的文章和综述。使用Excel 365、CiteSpace和VOSViewer对国家或地区、机构、作者、期刊、关键词和参考文献等方面进行文献计量分析。

结果

该分析共纳入了2005年至2024年的848篇出版物。结果显示出版物数量呈阶段性增长,在2020年达到峰值,有102篇出版物,随后逐渐下降。该领域的引用次数逐年增加,在2022年达到峰值,有3920次引用,随后下降。美国被确定为该领域最具生产力和影响力的国家,出版物数量和引用次数最多。他们拥有出版物和引用次数最多的机构。该领域的主要作者包括Verghese Joe、Shimada Hiroyuki和Rochester Lynn。主要期刊包括《BMC老年医学》《老年学杂志系列A:生物科学与医学科学》和《美国老年医学会杂志》。该领域经常提到的关键词是抑郁症、步态、步速、老年人和痴呆症。识别抑郁症中独特的步态模式、老年人的步态特征、步态与认知衰退之间的关联以及异常步态的干预措施构成了该领域当前的研究前沿。

结论

本研究首次利用文献计量学方法对步态相关抑郁症领域的研究进行可视化。它揭示了研究趋势和前沿,为寻求重要研究课题和潜在合作者的学者提供了有价值的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/338b/12421445/18897bff6255/fpsyt-16-1457176-g001.jpg

相似文献

1
Gait in depression: a bibliometric analysis and knowledge mapping of research trends over the past 20 years.
Front Psychiatry. 2025 Aug 20;16:1457176. doi: 10.3389/fpsyt.2025.1457176. eCollection 2025.
3
Knowledge graph and bibliometric analysis of inflammatory indicators in ovarian cancer.
Front Oncol. 2025 Jun 30;15:1533537. doi: 10.3389/fonc.2025.1533537. eCollection 2025.
6
Application of non-invasive imaging in myocardial infarction: a bibliometric analysis from January 2003 to December 2022.
Quant Imaging Med Surg. 2025 Jul 1;15(7):6340-6359. doi: 10.21037/qims-24-878. Epub 2025 Jun 30.
7
Non-suicidal self-injury in adolescent depression: A bibliometric study and visualization analysis.
Acta Psychol (Amst). 2025 Jul 17;259:105306. doi: 10.1016/j.actpsy.2025.105306.
10
Global Trends in Research Related to Emergence Agitation From 1978 to 2023: A Bibliometric Analysis.
J Perianesth Nurs. 2024 Aug;39(4):567-576.e1. doi: 10.1016/j.jopan.2023.10.017. Epub 2024 Jan 12.

本文引用的文献

4
Mapping knowledge landscapes and emerging trends of the biomarkers in melanoma: a bibliometric analysis from 2004 to 2022.
Front Oncol. 2023 Jun 23;13:1181164. doi: 10.3389/fonc.2023.1181164. eCollection 2023.
5
With life there is motion. Activity biomarkers signal important health and performance outcomes.
J Sci Med Sport. 2023 Jun;26 Suppl 1:S3-S8. doi: 10.1016/j.jsams.2023.01.009. Epub 2023 Feb 3.
6
Variability and symmetry of gait kinematics under dual-task performance of older patients with depression.
Aging Clin Exp Res. 2023 Feb;35(2):283-291. doi: 10.1007/s40520-022-02295-6. Epub 2022 Nov 18.
8
Motor alterations in depression and anxiety disorders: A systematic review and meta-analysis.
J Affect Disord. 2022 Nov 15;317:373-387. doi: 10.1016/j.jad.2022.08.060. Epub 2022 Aug 28.
9
Data augmentation for depression detection using skeleton-based gait information.
Med Biol Eng Comput. 2022 Sep;60(9):2665-2679. doi: 10.1007/s11517-022-02595-z. Epub 2022 Jul 13.
10
Knowledge Domain and Emerging Trends in Ferroptosis Research: A Bibliometric and Knowledge-Map Analysis.
Front Oncol. 2021 Jun 3;11:686726. doi: 10.3389/fonc.2021.686726. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验