Suppr超能文献

数字表型数据收集与分析中的机遇与挑战。

Opportunities and challenges in the collection and analysis of digital phenotyping data.

作者信息

Onnela Jukka-Pekka

机构信息

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.

出版信息

Neuropsychopharmacology. 2021 Jan;46(1):45-54. doi: 10.1038/s41386-020-0771-3. Epub 2020 Jul 17.

Abstract

The broad adoption and use of smartphones has led to fundamentally new opportunities for capturing social, behavioral, and cognitive phenotypes in free-living settings, outside of research laboratories and clinics. Predicated on the use of existing personal devices rather than the introduction of additional instrumentation, smartphone-based digital phenotyping presents us with several opportunities and challenges in data collection and data analysis. These two aspects are strongly coupled, because decisions about what data to collect and how to collect it constrain what statistical analyses can be carried out, now and years later, and therefore ultimately determine what scientific, clinical, and public health questions may be asked and answered. Digital phenotyping combines the excitement of fast-paced technologies, smartphones, cloud computing and machine learning, with deep mathematical and statistical questions, and it does this in the service of a better understanding our own behavior in ways that are objective, scalable, and reproducible. We will discuss some fundamental aspects of collection and analysis of digital phenotyping data, which takes us on a brief tour of several important scientific and technological concepts, from the open-source paradigm to computational complexity, with some unexpected insights provided by fields as varied as zoology and quantum mechanics.

摘要

智能手机的广泛采用和使用为在研究实验室和诊所之外的自由生活环境中捕捉社会、行为和认知表型带来了全新的机遇。基于使用现有的个人设备而非引入额外的仪器,基于智能手机的数字表型分析在数据收集和数据分析方面给我们带来了若干机遇和挑战。这两个方面紧密相连,因为关于收集哪些数据以及如何收集数据的决策会限制当下及数年之后能够进行的统计分析,进而最终决定可以提出并回答哪些科学、临床和公共卫生问题。数字表型分析将快节奏技术、智能手机、云计算和机器学习的兴奋点与深刻的数学和统计问题结合在一起,并且这样做是为了以客观、可扩展和可重复的方式更好地理解我们自己的行为。我们将讨论数字表型分析数据收集和分析的一些基本方面,这将带领我们简要了解几个重要的科学和技术概念,从开源范式到计算复杂性,同时还会有动物学和量子力学等不同领域提供的一些意想不到的见解。

相似文献

1
4
A Call to Expand the Scope of Digital Phenotyping.呼吁拓展数字表型学的研究范畴
J Med Internet Res. 2023 Mar 14;25:e39546. doi: 10.2196/39546.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验