Jiang Shan, Wu Xiang, Rommelfanger Nicholas J, Ou Zihao, Hong Guosong
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
Natl Sci Rev. 2022 Jan 18;9(10):nwac007. doi: 10.1093/nsr/nwac007. eCollection 2022 Oct.
Today's optical neuromodulation techniques are rapidly evolving, benefiting from advances in photonics, genetics and materials science. In this review, we provide an up-to-date overview of the latest optical approaches for neuromodulation. We begin with the physical principles and constraints underlying the interaction between light and neural tissue. We then present advances in optical neurotechnologies in seven modules: conventional optical fibers, multifunctional fibers, optical waveguides, light-emitting diodes, upconversion nanoparticles, optical neuromodulation based on the secondary effects of light, and unconventional light sources facilitated by ultrasound and magnetic fields. We conclude our review with an outlook on new methods and mechanisms that afford optical neuromodulation with minimal invasiveness and footprint.
当今的光学神经调节技术正在迅速发展,受益于光子学、遗传学和材料科学的进步。在本综述中,我们提供了最新的神经调节光学方法概述。我们首先介绍光与神经组织相互作用的物理原理和限制因素。然后,我们在七个模块中介绍光学神经技术的进展:传统光纤、多功能光纤、光波导、发光二极管、上转换纳米颗粒、基于光的二次效应的光学神经调节,以及由超声和磁场辅助的非常规光源。我们在综述结尾展望了能够以最小侵入性和占用空间实现光学神经调节的新方法和机制。