Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands.
Phys Med Biol. 2022 Nov 18;67(22). doi: 10.1088/1361-6560/ac97d8.
In this work we present a framework for robust deep learning-based VMAT forward dose calculations for the 1.5T MR-linac. A convolutional neural network was trained on the dose of individual multi-leaf-collimator VMAT segments and was used to predict the dose per segment for a set of MR-linac-deliverable VMAT test plans. The training set consisted of prostate, rectal, lung and esophageal tumour data. All patients were previously treated in our clinic with VMAT on a conventional linac. The clinical data were converted to an MR-linac environment prior to training. During training time, gantry and collimator angles were randomized for each training sample, while the multi-leaf-collimator shapes were rigidly shifted to ensure robust learning. A Monte Carlo dose engine was used for the generation of the ground truth data at 1% statistical uncertainty per control point. For a set of 17 MR-linac-deliverable VMAT test plans, generated on a research treatment planning system, our method predicted highly accurate dose distributions, reporting 99.7% ± 0.5% for the full plan prediction at the 3%/3 mm gamma criterion. Additional evaluation on previously unseen IMRT patients passed all clinical requirements resulting in 99.0% ± 0.6% for the 3%/3 mm analysis. The overall performance of our method makes it a promising plan validation solution for IMRT and VMAT workflows, robust to tumour anatomies and tissue density variations.
在这项工作中,我们提出了一个用于 1.5T MR-直线加速器的基于稳健深度学习的 VMAT 正向剂量计算框架。一个卷积神经网络在单个多叶准直器 VMAT 段的剂量上进行了训练,并用于预测一组 MR-直线加速器可交付的 VMAT 测试计划的每个段的剂量。训练集包括前列腺、直肠、肺和食管肿瘤数据。所有患者之前都在我们的诊所接受过传统直线加速器的 VMAT 治疗。在训练之前,临床数据被转换为 MR-直线加速器环境。在训练期间,为每个训练样本随机化了旋转架和准直器角度,同时刚性地移动了多叶准直器形状,以确保稳健的学习。使用蒙特卡罗剂量引擎在每个控制点产生 1%统计不确定性的真实数据。对于一组在研究治疗计划系统上生成的 17 个 MR-直线加速器可交付的 VMAT 测试计划,我们的方法预测了高度准确的剂量分布,在 3%/3mm 伽马标准下,全计划预测的准确率为 99.7%±0.5%。对以前未见的 IMRT 患者进行的额外评估通过了所有临床要求,导致 3%/3mm 分析的准确率为 99.0%±0.6%。我们的方法的整体性能使其成为 IMRT 和 VMAT 工作流程的有前途的计划验证解决方案,对肿瘤解剖结构和组织密度变化具有稳健性。