Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands.
Phys Med Biol. 2020 Apr 8;65(7):075013. doi: 10.1088/1361-6560/ab7630.
We present DeepDose, a deep learning framework for fast dose calculations in radiation therapy. Given a patient anatomy and linear-accelerator IMRT multi-leaf-collimator shape or segment, a novel set of physics-based inputs is calculated that encode the linac machine parameters into the underlying anatomy. These inputs are then used to train a deep convolutional network to derive the dose distribution of individual MLC shapes on a given patient anatomy. In this work we demonstrate the proof-of-concept application of DeepDose on 101 prostate patients treated in our clinic with fixed-beam IMRT. The ground-truth data used for training, validation and testing of the prediction were calculated with a state-of-the-art Monte Carlo dose engine at 1% statistical uncertainty per segment. A deep convolution network was trained using the data of 80 patients at the clinically used 3 mm grid spacing while 10 patients were used for validation. For another 11 independent test patients, the network was able to accurately estimate the segment doses from the clinical plans of each patient passing the clinical QA when compared with the Monte Carlo calculations, yielding on average 99.9%±0.3% for the forward calculated patient plans at 3%/3 mm gamma tests. Dose prediction using the trained network was very fast at approximately 0.9 seconds for the input generation and 0.6 seconds for single GPU inference per segment and 1 minute per patient in total. The overall performance of this dose calculation framework in terms of both accuracy and inference speed, makes it compelling for online adaptive workflows where fast segment dose calculations are needed.
我们提出了 DeepDose,这是一个用于放射治疗中快速剂量计算的深度学习框架。给定患者的解剖结构和直线加速器调强适形多叶准直器形状或段,我们计算了一组新颖的基于物理的输入,这些输入将直线加速器机器参数编码到基础解剖结构中。然后,这些输入用于训练深度卷积网络,以从给定患者解剖结构上的单个 MLC 形状得出剂量分布。在这项工作中,我们展示了 DeepDose 在我们诊所接受固定束调强放射治疗的 101 例前列腺患者中的概念验证应用。用于训练、验证和测试预测的真实数据是使用最先进的蒙特卡罗剂量引擎在每个段的 1%统计不确定性下计算的。使用 80 名患者的数据在临床使用的 3mm 网格间距上训练深度卷积网络,同时使用 10 名患者进行验证。对于另外 11 名独立的测试患者,当与蒙特卡罗计算相比时,网络能够准确地从每位患者的临床计划中估计段剂量,通过临床 QA 通过率平均为 99.9%±0.3%,在 3%/3mm 伽马测试中。使用训练好的网络进行剂量预测非常快,对于输入生成大约需要 0.9 秒,对于每个段的单 GPU 推断大约需要 0.6 秒,对于每个患者大约需要 1 分钟。该剂量计算框架在准确性和推断速度方面的整体性能,使其非常适合需要快速段剂量计算的在线自适应工作流程。