Rittiruam Meena, Noppakhun Jakapob, Setasuban Sorawee, Aumnongpho Nuttanon, Sriwattana Attachai, Boonchuay Suphawich, Saelee Tinnakorn, Wangphon Chanthip, Ektarawong Annop, Chammingkwan Patchanee, Taniike Toshiaki, Praserthdam Supareak, Praserthdam Piyasan
High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand.
Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand.
Sci Rep. 2022 Oct 5;12(1):16653. doi: 10.1038/s41598-022-21209-0.
This work introduced the high-throughput phase prediction of PtPd-based high-entropy alloys via the algorithm based on a combined Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) and artificial neural network (ANN) technique. As the first step, the KKR-CPA was employed to generate 2,720 data of formation energy and lattice parameters in the framework of the first-principles density functional theory. Following the data generation, 15 features were selected and verified for all HEA systems in each phase (FCC and BCC) via ANN. The algorithm exhibited high accuracy for all four prediction models on 36,556 data from 9139 HEA systems with 137,085 features, verified by R closed to unity and the mean relative error (MRE) within 5%. From this dataset comprising 5002 and 4137 systems of FCC and BCC phases, it can be realized based on the highest tendency of HEA phase formation that (1) Sc, Co, Cu, Zn, Y, Ru, Cd, Os, Ir, Hg, Al, Si, P, As, and Tl favor FCC phase, (2) Hf, Ga, In, Sn, Pb, and Bi favor BCC phase, and (3) Ti, V, Cr, Mn, Fe, Ni, Zr, Nb, Mo, Tc, Rh, Ag, Ta, W, Re, Au, Ge, and Sb can be found in both FCC and BCC phases with comparable tendency, where all predictions are in good agreement with the data from the literature. Thus, the combination of KKR-CPA and ANN can reduce the computational cost for the screening of PtPd-based HEA and accurately predict the structure, i.e., FCC, BCC, etc.
这项工作通过基于科林加-科恩-罗斯托克尔相干势近似(KKR-CPA)和人工神经网络(ANN)技术相结合的算法,介绍了铂钯基高熵合金的高通量相预测。第一步,在第一性原理密度泛函理论框架下,采用KKR-CPA生成2720个形成能和晶格参数数据。数据生成之后,通过人工神经网络为每个相(面心立方和体心立方)的所有高熵合金系统选择并验证了15个特征。该算法在来自9139个具有137085个特征的高熵合金系统的36556个数据上,对所有四个预测模型都表现出高精度,通过相关系数R接近1以及平均相对误差(MRE)在5%以内得到验证。从这个包含5002个面心立方相和4137个体心立方相系统的数据集中,可以基于高熵合金相形成的最高倾向得出:(1)钪、钴、铜、锌、钇、钌、镉、锇、铱、汞、铝、硅、磷、砷和铊有利于形成面心立方相;(2)铪、镓、铟、锡、铅和铋有利于形成体心立方相;(3)钛、钒、铬、锰、铁、镍、锆、铌、钼、锝、铑、银、钽、钨、铼、金、锗和锑在面心立方相和体心立方相中都有相当的形成倾向,所有预测结果与文献数据都非常吻合。因此,KKR-CPA和人工神经网络的结合可以降低筛选铂钯基高熵合金时的计算成本,并准确预测其结构,即面心立方、体心立方等。