Neal Christopher A P, León Valeria, Quan Michelle C, Chibambo Nondumiso O, Calabrese Michelle A
Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, Minneapolis, MN 55455, United States.
Mechanical Engineering Department, The University of Texas Rio Grande Valley, Edinburg, TX 78539, United States.
J Colloid Interface Sci. 2023 Jan;629(Pt B):878-895. doi: 10.1016/j.jcis.2022.08.139. Epub 2022 Sep 12.
The shape and quantity of hydrophilic silica nanoparticles (NPs) can be used to tune the microstructure, rheology, and stability of phase-separating polymer solutions. In thermoresponsive polymer systems, silica nanospheres are well-studied whereas anisotropic NPs have little literature precedent. Here, we hypothesize that NP shape and concentration lower the onset of rheological and turbidimetric transitions of aqueous poly(N-isopropyl acrylamide) (PNIPAM) solutions.
Differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), turbidimetry, and oscillatory rheology are utilized to examine interactions between NPs, PNIPAM, and water and to track changes in phase separation and rheological properties due to NP concentration and shape.
NP addition reduces phase separation enthalpy due to PNIPAM-NP hydrogen bonding interactions, the degree to which depends on polymer content. While NP addition minorly impacts thermodynamic and optical properties, rheological transitions and associated rheological properties are dramatically altered with increasing temperature, and depend on NP quantity, shape, and polymer molecular weight. Thus NP content and shape can be used to finely tune transition temperatures and mechanical properties for applications in stimuli-responsive materials.
亲水性二氧化硅纳米颗粒(NP)的形状和数量可用于调节相分离聚合物溶液的微观结构、流变学和稳定性。在热响应聚合物体系中,二氧化硅纳米球已得到充分研究,而异质性NP的文献先例较少。在此,我们假设NP的形状和浓度会降低聚(N-异丙基丙烯酰胺)(PNIPAM)水溶液的流变学和比浊法转变的起始点。
利用差示扫描量热法(DSC)、傅里叶变换红外光谱法(FTIR)、比浊法和振荡流变学来研究NP、PNIPAM和水之间的相互作用,并追踪由于NP浓度和形状导致的相分离和流变学性质的变化。
由于PNIPAM-NP氢键相互作用,添加NP会降低相分离焓,其程度取决于聚合物含量。虽然添加NP对热力学和光学性质影响较小,但流变学转变和相关流变学性质会随着温度升高而显著改变,并且取决于NP的数量、形状和聚合物分子量。因此,NP的含量和形状可用于精确调节转变温度和机械性能,以应用于刺激响应材料。