Venkatesh Kesavan, Santomartino Samantha M, Sulam Jeremias, Yi Paul H
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Md (K.V., J.S.); and University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W Baltimore St, First Floor, Room 1172, Baltimore, MD 21201 (K.V., S.M.S., P.H.Y.).
Radiol Artif Intell. 2022 Aug 17;4(5):e220081. doi: 10.1148/ryai.220081. eCollection 2022 Sep.
To evaluate code and data sharing practices in original artificial intelligence (AI) scientific manuscripts published in the Radiological Society of North America (RSNA) journals suite from 2017 through 2021.
A retrospective meta-research study was conducted of articles published in the RSNA journals suite from January 1, 2017, through December 31, 2021. A total of 218 articles were included and evaluated for code sharing practices, reproducibility of shared code, and data sharing practices. Categorical comparisons were conducted using Fisher exact tests with respect to year and journal of publication, author affiliation(s), and type of algorithm used.
Of the 218 included articles, 73 (34%) shared code, with 24 (33% of code sharing articles and 11% of all articles) sharing reproducible code. and published the most code sharing articles (48 [66%] and 21 [29%], respectively). Twenty-nine articles (13%) shared data, and 12 of these articles (41% of data sharing articles) shared complete experimental data by using only public domain datasets. Four of the 218 articles (2%) shared both code and complete experimental data. Code sharing rates were statistically higher in 2020 and 2021 compared with earlier years ( < .01) and were higher in and compared with other journals ( < .01).
Original AI scientific articles in the RSNA journals suite had low rates of code and data sharing, emphasizing the need for open-source code and data to achieve transparent and reproducible science. Meta-Analysis, AI in Education, Machine Learning.© RSNA, 2022.
评估2017年至2021年在北美放射学会(RSNA)期刊系列中发表的原创人工智能(AI)科学手稿中的代码和数据共享实践情况。
对2017年1月1日至2021年12月31日在RSNA期刊系列中发表的文章进行回顾性元研究。共纳入218篇文章,并对其代码共享实践、共享代码的可重复性以及数据共享实践进行评估。使用Fisher精确检验对发表年份、期刊、作者所属机构以及所使用算法类型进行分类比较。
在218篇纳入文章中,73篇(34%)共享了代码,其中24篇(占代码共享文章的33%,占所有文章的11%)共享了可重复代码。 和 发表的代码共享文章最多(分别为48篇[66%]和21篇[29%])。29篇文章(13%)共享了数据,其中12篇文章(占数据共享文章的41%)仅使用公共领域数据集共享了完整的实验数据。218篇文章中有4篇(2%)既共享了代码又共享了完整的实验数据。与早期年份相比,2020年和2021年的代码共享率在统计学上更高(P < .01),并且与其他期刊相比, 和 中的代码共享率更高(P < .01)。
RSNA期刊系列中的原创AI科学文章的代码和数据共享率较低,强调了开源代码和数据对于实现透明且可重复的科学的必要性。元分析、教育中的人工智能、机器学习。© RSNA,2022。