使用共享代码和数据在生态学和进化生物学的元分析中重现结果。

Computationally reproducing results from meta-analyses in ecology and evolutionary biology using shared code and data.

机构信息

MetaMelb Research Initiative, The University of Melbourne, Melbourne, Victoria, Australia.

School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Melbourne, Victoria, Australia.

出版信息

PLoS One. 2024 Mar 13;19(3):e0300333. doi: 10.1371/journal.pone.0300333. eCollection 2024.

Abstract

Many journals in ecology and evolutionary biology encourage or require authors to make their data and code available alongside articles. In this study we investigated how often this data and code could be used together, when both were available, to computationally reproduce results published in articles. We surveyed the data and code sharing practices of 177 meta-analyses published in ecology and evolutionary biology journals published between 2015-17: 60% of articles shared data only, 1% shared code only, and 15% shared both data and code. In each of the articles which had shared both (n = 26), we selected a target result and attempted to reproduce it. Using the shared data and code files, we successfully reproduced the targeted results in 27-73% of the 26 articles, depending on the stringency of the criteria applied for a successful reproduction. The results from this sample of meta-analyses in the 2015-17 literature can provide a benchmark for future meta-research studies gauging the computational reproducibility of published research in ecology and evolutionary biology.

摘要

许多生态学和进化生物学领域的期刊鼓励或要求作者在文章旁附上数据和代码。在这项研究中,我们调查了当数据和代码都可用时,这些数据和代码能够在多大程度上一起被用于计算重现发表在文章中的结果。我们调查了在 2015-17 年期间发表的生态学和进化生物学期刊上的 177 项荟萃分析的分享数据和代码的实践:60%的文章仅分享数据,1%的文章仅分享代码,15%的文章同时分享数据和代码。在那些同时分享了数据和代码的文章中(n=26),我们选择了一个目标结果并尝试重现它。使用共享的数据和代码文件,我们成功地在 26 篇文章中的 27-73%重现了目标结果,具体取决于应用的成功重现标准的严格程度。本研究对 2015-17 年文献中的荟萃分析进行抽样,可以为未来衡量生态学和进化生物学领域发表的研究的计算可重现性的元研究提供基准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a02/10936784/862cf6acd53a/pone.0300333.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索