Liu Yuhang, Ding Jie, Li Fuhua, Su Xiaozhi, Zhang Qitao, Guan Guangjian, Hu Fangxin, Zhang Jincheng, Wang Qilun, Jiang Yucheng, Liu Bin, Yang Hong Bin
School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China.
Adv Mater. 2023 Jan;35(1):e2207114. doi: 10.1002/adma.202207114. Epub 2022 Dec 3.
Designing and synthesizing highly efficient and stable electrocatalysts for hydrogen evolution reaction (HER) is important for realizing the hydrogen economy. Tuning the electronic structure of the electrocatalysts is essential to achieve optimal HER activity, and interfacial engineering is an effective strategy to induce electron transfer in a heterostructure interface to optimize HER kinetics. In this study, ultrafine RhP /Rh nanoparticles are synthesized with a well-defined semiconductor-metal heterointerface embedded in N,P co-doped graphene (RhP /Rh@NPG) via a one-step pyrolysis. RhP /Rh@NPG exhibits outstanding HER performances under all pH conditions. Electrochemical characterization and first principles density functional theory calculations reveal that the RhP /Rh heterointerface induces electron transfer from metallic Rh to semiconductive RhP , which increases the electron density on the Rh atoms in RhP and weakens the hydrogen adsorption on RhP , thereby accelerating the HER kinetics. Moreover, the interfacial electron transfer activates the dual-site synergistic effect of Rh and P of RhP in neutral and alkaline environments, thereby promoting reorganization of interfacial water molecules for faster HER kinetics.
设计和合成用于析氢反应(HER)的高效稳定电催化剂对于实现氢能经济至关重要。调节电催化剂的电子结构对于实现最佳HER活性至关重要,而界面工程是在异质结构界面中诱导电子转移以优化HER动力学的有效策略。在本研究中,通过一步热解合成了嵌入N、P共掺杂石墨烯(RhP /Rh@NPG)中的具有明确半导体-金属异质界面的超细RhP /Rh纳米颗粒。RhP /Rh@NPG在所有pH条件下均表现出出色的HER性能。电化学表征和第一性原理密度泛函理论计算表明,RhP /Rh异质界面诱导电子从金属Rh转移到半导体RhP ,这增加了RhP中Rh原子上的电子密度并减弱了氢在RhP上的吸附,从而加速了HER动力学。此外,界面电子转移激活了中性和碱性环境中RhP的Rh和P的双位点协同效应,从而促进界面水分子的重组以实现更快的HER动力学。