Suppr超能文献

通过比较不同的重编程调控组,揭示了 Ascl1 的跨谱系潜力。

Cross-lineage potential of Ascl1 uncovered by comparing diverse reprogramming regulatomes.

机构信息

The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Cell Stem Cell. 2022 Oct 6;29(10):1491-1504.e9. doi: 10.1016/j.stem.2022.09.006.

Abstract

Direct reprogramming has revolutionized the fields of stem cell biology and regenerative medicine. However, the common mechanisms governing how reprogramming cells undergo transcriptome and epigenome remodeling (i.e., regulatome remodeling) have not been investigated. Here, by characterizing early changes in the regulatome of three different types of direct reprogramming, we identify lineage-specific features as well as common regulatory transcription factors. Of particular interest, we discover that the neuronal factor Ascl1 possesses cross-lineage potential; together with Mef2c, it drives efficient cardiac reprogramming toward a mature and induced cardiomyocyte phenotype. Through ChIP-seq and RNA-seq, we find that MEF2C drives the shift in ASCL1 binding away from neuronal genes toward cardiac genes, guiding their co-operative epigenetic and transcription activities. Together, these findings demonstrate the existence of common regulators of different direct reprogramming and argue against the premise that transcription factors possess only lineage-specific capabilities for altering cell fate - the basic premise used to develop direct reprogramming approaches.

摘要

直接重编程已经彻底改变了干细胞生物学和再生医学领域。然而,目前还没有研究哪些共同的机制控制着细胞在转录组和表观基因组重塑(即调控组重塑)过程中发生变化。在这里,我们通过对三种不同类型的直接重编程早期调控组的特征进行分析,确定了谱系特异性特征和共同的调控转录因子。特别有趣的是,我们发现神经元因子 Ascl1 具有跨谱系的潜力;它与 Mef2c 一起,能够高效地将心脏细胞重编程为成熟的诱导性心肌细胞表型。通过 ChIP-seq 和 RNA-seq,我们发现 MEF2C 驱动 ASCL1 结合从神经元基因向心脏基因的转变,指导它们的协同表观遗传和转录活性。总之,这些发现表明不同直接重编程之间存在共同的调控因子,这也反驳了转录因子只具有改变细胞命运的谱系特异性能力的观点——这种观点是开发直接重编程方法的基本前提。

相似文献

1
Cross-lineage potential of Ascl1 uncovered by comparing diverse reprogramming regulatomes.
Cell Stem Cell. 2022 Oct 6;29(10):1491-1504.e9. doi: 10.1016/j.stem.2022.09.006.
2
Unleashing Ascl1: Exploring Cross-Lineage Potential in Reprogramming and Regenerative Frontiers.
Cell Reprogram. 2023 Aug;25(4):139-141. doi: 10.1089/cell.2023.0080.
3
Isolation and Neuronal Reprogramming of Mouse Embryonic Fibroblasts.
Methods Mol Biol. 2021;2352:1-12. doi: 10.1007/978-1-0716-1601-7_1.
4
Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons.
Cell. 2013 Oct 24;155(3):621-35. doi: 10.1016/j.cell.2013.09.028.
6
Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq.
Nature. 2016 Jun 16;534(7607):391-5. doi: 10.1038/nature18323. Epub 2016 Jun 8.
7
Rapid Chromatin Switch in the Direct Reprogramming of Fibroblasts to Neurons.
Cell Rep. 2017 Sep 26;20(13):3236-3247. doi: 10.1016/j.celrep.2017.09.011.
8
Production of Cardiomyocyte-Like Cells by Fibroblast Reprogramming with Defined Factors.
Methods Mol Biol. 2021;2239:33-46. doi: 10.1007/978-1-0716-1084-8_3.
9
Direct In Vitro Reprogramming of Astrocytes into Induced Neurons.
Methods Mol Biol. 2021;2352:13-29. doi: 10.1007/978-1-0716-1601-7_2.
10
Generation of induced neuronal cells by the single reprogramming factor ASCL1.
Stem Cell Reports. 2014 Aug 12;3(2):282-96. doi: 10.1016/j.stemcr.2014.05.020. Epub 2014 Jul 4.

引用本文的文献

1
Cellular Reprogramming by PHF7 Enhances Cardiac Function Following Myocardial Infarction.
Circulation. 2025 Jul 9. doi: 10.1161/CIRCULATIONAHA.124.072733.
2
Cell fate acquisition and reprogramming by the proneural transcription factor ASCL1.
Open Biol. 2025 Jun;15(6):250018. doi: 10.1098/rsob.250018. Epub 2025 Jun 18.
4
Cell reprogramming: methods, mechanisms and applications.
Cell Regen. 2025 Mar 27;14(1):12. doi: 10.1186/s13619-025-00229-x.
6
Decoding the epigenetic and transcriptional basis of direct cardiac reprogramming.
Stem Cells. 2025 Mar 10;43(3). doi: 10.1093/stmcls/sxaf002.
7
Control of cell fate upon transcription factor-driven cardiac reprogramming.
Curr Opin Genet Dev. 2024 Dec;89:102226. doi: 10.1016/j.gde.2024.102226.
8
Phospho-regulation of ASCL1-mediated chromatin opening during cellular reprogramming.
Development. 2024 Dec 15;151(24). doi: 10.1242/dev.204329. Epub 2024 Dec 12.
9
Direct Cardiac Reprogramming in the Age of Computational Biology.
J Cardiovasc Dev Dis. 2024 Sep 4;11(9):273. doi: 10.3390/jcdd11090273.
10
Epigenetic Dynamics in Reprogramming to Dopaminergic Neurons for Parkinson's Disease.
Adv Sci (Weinh). 2024 Nov;11(41):e2403105. doi: 10.1002/advs.202403105. Epub 2024 Sep 16.

本文引用的文献

1
Functional inference of gene regulation using single-cell multi-omics.
Cell Genom. 2022 Sep 14;2(9). doi: 10.1016/j.xgen.2022.100166. Epub 2022 Aug 4.
2
JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles.
Nucleic Acids Res. 2022 Jan 7;50(D1):D165-D173. doi: 10.1093/nar/gkab1113.
3
clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.
Innovation (Camb). 2021 Jul 1;2(3):100141. doi: 10.1016/j.xinn.2021.100141. eCollection 2021 Aug 28.
4
Delineating chromatin accessibility re-patterning at single cell level during early stage of direct cardiac reprogramming.
J Mol Cell Cardiol. 2022 Jan;162:62-71. doi: 10.1016/j.yjmcc.2021.09.002. Epub 2021 Sep 10.
5
CellProfiler 4: improvements in speed, utility and usability.
BMC Bioinformatics. 2021 Sep 10;22(1):433. doi: 10.1186/s12859-021-04344-9.
6
Integrated analysis of multimodal single-cell data.
Cell. 2021 Jun 24;184(13):3573-3587.e29. doi: 10.1016/j.cell.2021.04.048. Epub 2021 May 31.
7
Gene signature extraction and cell identity recognition at the single-cell level with Cell-ID.
Nat Biotechnol. 2021 Sep;39(9):1095-1102. doi: 10.1038/s41587-021-00896-6. Epub 2021 Apr 29.
8
YAP and TAZ Mediators at the Crossroad between Metabolic and Cellular Reprogramming.
Metabolites. 2021 Mar 8;11(3):154. doi: 10.3390/metabo11030154.
9
Direct cell reprogramming: approaches, mechanisms and progress.
Nat Rev Mol Cell Biol. 2021 Jun;22(6):410-424. doi: 10.1038/s41580-021-00335-z. Epub 2021 Feb 22.
10
The Dynamics of Transcriptional Activation by Hepatic Reprogramming Factors.
Mol Cell. 2020 Aug 20;79(4):660-676.e8. doi: 10.1016/j.molcel.2020.07.012. Epub 2020 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验