Suppr超能文献

成纤维细胞向神经元的直接重编程中的快速染色质转换。

Rapid Chromatin Switch in the Direct Reprogramming of Fibroblasts to Neurons.

机构信息

Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University, Stanford, CA 94305, USA.

Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

出版信息

Cell Rep. 2017 Sep 26;20(13):3236-3247. doi: 10.1016/j.celrep.2017.09.011.

Abstract

How transcription factors (TFs) reprogram one cell lineage to another remains unclear. Here, we define chromatin accessibility changes induced by the proneural TF Ascl1 throughout conversion of fibroblasts into induced neuronal (iN) cells. Thousands of genomic loci are affected as early as 12 hr after Ascl1 induction. Surprisingly, over 80% of the accessibility changes occur between days 2 and 5 of the 3-week reprogramming process. This chromatin switch coincides with robust activation of endogenous neuronal TFs and nucleosome phasing of neuronal promoters and enhancers. Subsequent morphological and functional maturation of iN cells is accomplished with relatively little chromatin reconfiguration. By integrating chromatin accessibility and transcriptome changes, we built a network model of dynamic TF regulation during iN cell reprogramming and identified Zfp238, Sox8, and Dlx3 as key TFs downstream of Ascl1. These results reveal a singular, coordinated epigenomic switch during direct reprogramming, in contrast to stepwise cell fate transitions in development.

摘要

转录因子 (TFs) 如何将一种细胞谱系重编程为另一种细胞谱系尚不清楚。在这里,我们定义了在成纤维细胞向诱导性神经元 (iN) 细胞转化过程中,神经前体细胞 TF Ascl1 诱导的染色质可及性变化。在 Ascl1 诱导后 12 小时内,数千个基因组位点就受到影响。令人惊讶的是,超过 80%的可及性变化发生在 3 周重编程过程的第 2 天到第 5 天之间。这种染色质转换与内源性神经元 TF 的强烈激活以及神经元启动子和增强子的核小体相位相一致。随后,iN 细胞的形态和功能成熟伴随着相对较少的染色质重新配置。通过整合染色质可及性和转录组变化,我们构建了 iN 细胞重编程过程中动态 TF 调控的网络模型,并确定了 Zfp238、Sox8 和 Dlx3 作为 Ascl1 下游的关键 TF。这些结果揭示了在直接重编程过程中存在一个独特的、协调的表观基因组开关,而不是发育过程中逐步的细胞命运转变。

相似文献

1
Rapid Chromatin Switch in the Direct Reprogramming of Fibroblasts to Neurons.
Cell Rep. 2017 Sep 26;20(13):3236-3247. doi: 10.1016/j.celrep.2017.09.011.
2
Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons.
Cell. 2013 Oct 24;155(3):621-35. doi: 10.1016/j.cell.2013.09.028.
3
Small Molecules Modulate Chromatin Accessibility to Promote NEUROG2-Mediated Fibroblast-to-Neuron Reprogramming.
Stem Cell Reports. 2016 Nov 8;7(5):955-969. doi: 10.1016/j.stemcr.2016.09.013. Epub 2016 Oct 27.
5
Delineating chromatin accessibility re-patterning at single cell level during early stage of direct cardiac reprogramming.
J Mol Cell Cardiol. 2022 Jan;162:62-71. doi: 10.1016/j.yjmcc.2021.09.002. Epub 2021 Sep 10.
6
Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq.
Nature. 2016 Jun 16;534(7607):391-5. doi: 10.1038/nature18323. Epub 2016 Jun 8.
7
ONECUT transcription factors induce neuronal characteristics and remodel chromatin accessibility.
Nucleic Acids Res. 2019 Jun 20;47(11):5587-5602. doi: 10.1093/nar/gkz273.
8
Protein-based direct reprogramming of fibroblasts to neuronal cells using 30Kc19 protein and transcription factor Ascl1.
Int J Biochem Cell Biol. 2020 Apr;121:105717. doi: 10.1016/j.biocel.2020.105717. Epub 2020 Feb 11.
9
Cross-lineage potential of Ascl1 uncovered by comparing diverse reprogramming regulatomes.
Cell Stem Cell. 2022 Oct 6;29(10):1491-1504.e9. doi: 10.1016/j.stem.2022.09.006.

引用本文的文献

1
Cell fate acquisition and reprogramming by the proneural transcription factor ASCL1.
Open Biol. 2025 Jun;15(6):250018. doi: 10.1098/rsob.250018. Epub 2025 Jun 18.
3
Cell reprogramming: methods, mechanisms and applications.
Cell Regen. 2025 Mar 27;14(1):12. doi: 10.1186/s13619-025-00229-x.
4
Phospho-regulation of ASCL1-mediated chromatin opening during cellular reprogramming.
Development. 2024 Dec 15;151(24). doi: 10.1242/dev.204329. Epub 2024 Dec 12.
6
Spatially resolved epigenome sequencing via Tn5 transposition and deterministic DNA barcoding in tissue.
Nat Protoc. 2024 Nov;19(11):3389-3425. doi: 10.1038/s41596-024-01013-y. Epub 2024 Jun 28.
9
In vitro human cell culture models in a bench-to-bedside approach to epilepsy.
Epilepsia Open. 2024 Jun;9(3):865-890. doi: 10.1002/epi4.12941. Epub 2024 Apr 18.
10
Next-generation direct reprogramming.
Front Cell Dev Biol. 2024 Feb 2;12:1343106. doi: 10.3389/fcell.2024.1343106. eCollection 2024.

本文引用的文献

1
Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates.
Nature. 2017 Apr 13;544(7649):245-249. doi: 10.1038/nature21722. Epub 2017 Apr 5.
2
Cooperative Binding of Transcription Factors Orchestrates Reprogramming.
Cell. 2017 Jan 26;168(3):442-459.e20. doi: 10.1016/j.cell.2016.12.016. Epub 2017 Jan 19.
3
Expression of Terminal Effector Genes in Mammalian Neurons Is Maintained by a Dynamic Relay of Transient Enhancers.
Neuron. 2016 Dec 21;92(6):1252-1265. doi: 10.1016/j.neuron.2016.11.037. Epub 2016 Dec 8.
4
A Multi-step Transcriptional and Chromatin State Cascade Underlies Motor Neuron Programming from Embryonic Stem Cells.
Cell Stem Cell. 2017 Feb 2;20(2):205-217.e8. doi: 10.1016/j.stem.2016.11.006. Epub 2016 Dec 8.
5
SoxE factors: Transcriptional regulators of neural differentiation and nervous system development.
Semin Cell Dev Biol. 2017 Mar;63:35-42. doi: 10.1016/j.semcdb.2016.08.013. Epub 2016 Aug 21.
6
Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution.
Nat Genet. 2016 Oct;48(10):1193-203. doi: 10.1038/ng.3646. Epub 2016 Aug 15.
7
The landscape of accessible chromatin in mammalian preimplantation embryos.
Nature. 2016 Jun 30;534(7609):652-7. doi: 10.1038/nature18606. Epub 2016 Jun 15.
8
Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq.
Nature. 2016 Jun 16;534(7607):391-5. doi: 10.1038/nature18323. Epub 2016 Jun 8.
9
Molecular features of cellular reprogramming and development.
Nat Rev Mol Cell Biol. 2016 Mar;17(3):139-54. doi: 10.1038/nrm.2016.6. Epub 2016 Feb 17.
10
Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions.
Genome Res. 2015 Nov;25(11):1757-70. doi: 10.1101/gr.192294.115. Epub 2015 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验