Suppr超能文献

计算机辅助精液分析(CASA)算法评估工具。

An assessment tool for computer-assisted semen analysis (CASA) algorithms.

机构信息

Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.

Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, 19104, USA.

出版信息

Sci Rep. 2022 Oct 7;12(1):16830. doi: 10.1038/s41598-022-20943-9.

Abstract

Computer-Assisted Semen Analysis (CASA) enables reliable analysis of semen images, and is designed to process large number of images with high consistency, accuracy, and repeatability. Design and testing of CASA algorithms can be accelerated greatly if reliable simulations of semen images under a variety of conditions and sample quality modes are available. Using life-like simulation of semen images can quantify the performance of existing and proposed CASA algorithms, since the parameters of the simulated image are known and controllable. We present simulation models for sperm cell image and swimming modes observed in real 2D (top-down) images of sperm cells in laboratory specimen. The models simulate human sperm using four (4) types of swimming, namely linear mean, circular, hyperactive, and immotile (or dead). The simulation models are used in studying algorithms for segmentation, localization, and tracking of sperm cells. Several segmentation and localization algorithms were tested under varying levels of noise, and then compared using precision, recall, and the optimal subpattern assignment (OSPA) metric. Images of real human semen sample were used to validate the segmentation and localization observations obtained from simulations. An example is given of sperm cell tracking on simulated semen images of cells using the different tracking algorithms (nearest neighbor (NN), global nearest neighbor (GNN), probabilistic data association filter (PDAF), and joint probabilistic data association filter (JPDAF)). Tracking performance was evaluated through multi-object tracking precision (MOTP) and multi-object tracking accuracy (MOTA). Simulation models enable objective assessments of semen image processing algorithms. We demonstrate the use of a new simulation tool to assess and compare segmentation, localization, and tracking methods. The simulation software allows testing along a large spectrum of parameter values that control the appearance and behavior of simulated semen images. Users can generate scenarios of different characteristics and assess the effectiveness of different CASA algorithms in these environments. The simulation was used to assess and compare algorithms for segmentation and tracking of sperm cells in semen images.

摘要

计算机辅助精液分析(CASA)能够可靠地分析精液图像,旨在处理大量具有高度一致性、准确性和可重复性的图像。如果可以获得各种条件和样本质量模式下的可靠精液图像模拟,那么 CASA 算法的设计和测试可以大大加快。使用逼真的精液图像模拟可以量化现有和提出的 CASA 算法的性能,因为模拟图像的参数是已知且可控制的。我们提出了用于模拟精子细胞图像和在实验室标本中观察到的精子细胞 2D(自上而下)图像中的游动模式的模拟模型。这些模型使用四种(4 种)游动类型模拟人类精子,即线性平均、圆形、过度活跃和不动(或死亡)。模拟模型用于研究精子细胞分割、定位和跟踪算法。在不同噪声水平下测试了几种分割和定位算法,然后使用精度、召回率和最优子模式分配(OSPA)度量进行比较。使用真实人类精液样本的图像验证了从模拟中获得的分割和定位观察结果。给出了一个示例,即在使用不同跟踪算法(最近邻(NN)、全局最近邻(GNN)、概率数据关联滤波器(PDAF)和联合概率数据关联滤波器(JPDAF))在模拟精液图像上跟踪精子细胞。通过多目标跟踪精度(MOTP)和多目标跟踪准确性(MOTA)评估跟踪性能。模拟模型能够对精液图像处理算法进行客观评估。我们展示了使用新的模拟工具来评估和比较分割、定位和跟踪方法。该模拟软件允许沿着控制模拟精液图像外观和行为的大量参数值进行测试。用户可以生成具有不同特征的场景,并在这些环境中评估不同 CASA 算法的有效性。该模拟用于评估和比较精液图像中精子细胞的分割和跟踪算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59d2/9546881/d33f6f0bb0d6/41598_2022_20943_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验