Suppr超能文献

伊朗心肌梗死死亡估计:人工神经网络。

Estimation of myocardial infarction death in Iran: artificial neural network.

机构信息

Cabrini Research, Cabrini Health, Melbourne, VIC, 3144, Australia.

School of Public Health and Preventative Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia.

出版信息

BMC Cardiovasc Disord. 2022 Oct 7;22(1):438. doi: 10.1186/s12872-022-02871-8.

Abstract

BACKGROUND

Examining past trends and predicting the future helps policymakers to design effective interventions to deal with myocardial infarction (MI) with a clear understanding of the current and future situation. The aim of this study was to estimate the death rate due to MI in Iran by artificial neural network (ANN).

METHODS

In this ecological study, the prevalence of diabetes, hypercholesterolemia over 200, hypertension, overweight and obesity were estimated for the years 2017-2025. ANN and Linear regression model were used. Also, Specialists were also asked to predict the death rate due to MI by considering the conditions of 3 conditions (optimistic, pessimistic, and probable), and the predicted process was compared with the modeling process.

RESULTS

Death rate due to MI in Iran is expected to decrease on average, while there will be a significant decrease in the prevalence of hypercholesterolemia 1.031 (- 24.81, 26.88). Also, the trend of diabetes 10.48 (111.45, - 132.42), blood pressure - 110.48 (- 174.04, - 46.91) and obesity and overweight - 35.84 (- 18.66, - 5.02) are slowly increasing. MI death rate in Iran is higher in men but is decreasing on average. Experts' forecasts are different and have predicted a completely upward trend.

CONCLUSION

The trend predicted by the modeling shows that the death rate due to MI will decrease in the future with a low slope. Improving the infrastructure for providing preventive services to reduce the risk factors for cardiovascular disease in the community is one of the priority measures in the current situation.

摘要

背景

了解过去的趋势并预测未来有助于政策制定者在清楚了解当前和未来情况的基础上,设计有效的干预措施来应对心肌梗死 (MI)。本研究旨在使用人工神经网络 (ANN) 估计伊朗因 MI 导致的死亡率。

方法

在这项生态研究中,估计了 2017-2025 年期间糖尿病、胆固醇超过 200、高血压、超重和肥胖的流行率。使用了人工神经网络和线性回归模型。此外,还要求专家考虑 3 种情况(乐观、悲观和可能)预测因 MI 导致的死亡率,并将预测过程与建模过程进行比较。

结果

伊朗因 MI 导致的死亡率预计将平均下降,而胆固醇升高的流行率将显著下降 1.031(-24.81,26.88)。此外,糖尿病的趋势为 10.48(111.45,-132.42)、血压-110.48(-174.04,-46.91)和肥胖和超重-35.84(-18.66,-5.02)呈缓慢上升趋势。伊朗男性因 MI 导致的死亡率较高,但平均呈下降趋势。专家的预测结果不同,他们预测出完全上升的趋势。

结论

建模预测的趋势表明,未来 MI 死亡率将呈下降趋势,斜率较低。改善提供预防服务的基础设施,以减少社区心血管疾病的风险因素,是当前情况下的优先措施之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a85b/9547455/640fb0a91c85/12872_2022_2871_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验