文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

SVD-CLAHE 增强和平衡损失函数在不平衡的 Chest X-Ray 数据集上进行 Covid-19 检测。

SVD-CLAHE boosting and balanced loss function for Covid-19 detection from an imbalanced Chest X-Ray dataset.

机构信息

School of Engineering and Technology, Christ (Deemed to be University), Bangalore 560074, India.

Bharati Vidyapeeth's College of Engineering, New Delhi 110063, India.

出版信息

Comput Biol Med. 2022 Nov;150:106092. doi: 10.1016/j.compbiomed.2022.106092. Epub 2022 Sep 28.


DOI:10.1016/j.compbiomed.2022.106092
PMID:36208598
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9514969/
Abstract

Covid-19 disease has had a disastrous effect on the health of the global population, for the last two years. Automatic early detection of Covid-19 disease from Chest X-Ray (CXR) images is a very crucial step for human survival against Covid-19. In this paper, we propose a novel data-augmentation technique, called SVD-CLAHE Boosting and a novel loss function Balanced Weighted Categorical Cross Entropy (BWCCE), in order to detect Covid 19 disease efficiently from a highly class-imbalanced Chest X-Ray image dataset. Our proposed SVD-CLAHE Boosting method is comprised of both oversampling and under-sampling methods. First, a novel Singular Value Decomposition (SVD) based contrast enhancement and Contrast Limited Adaptive Histogram Equalization (CLAHE) methods are employed for oversampling the data in minor classes. Simultaneously, a Random Under Sampling (RUS) method is incorporated in major classes, so that the number of images per class will be more balanced. Thereafter, Balanced Weighted Categorical Cross Entropy (BWCCE) loss function is proposed in order to further reduce small class imbalance after SVD-CLAHE Boosting. Experimental results reveal that ResNet-50 model on the augmented dataset (by SVD-CLAHE Boosting), along with BWCCE loss function, achieved 95% F1 score, 94% accuracy, 95% recall, 96% precision and 96% AUC, which is far better than the results by other conventional Convolutional Neural Network (CNN) models like InceptionV3, DenseNet-121, Xception etc. as well as other existing models like Covid-Lite and Covid-Net. Hence, our proposed framework outperforms other existing methods for Covid-19 detection. Furthermore, the same experiment is conducted on VGG-19 model in order to check the validity of our proposed framework. Both ResNet-50 and VGG-19 model are pre-trained on the ImageNet dataset. We publicly shared our proposed augmented dataset on Kaggle website (https://www.kaggle.com/tr1gg3rtrash/balanced-augmented-covid-cxr-dataset), so that any research community can widely utilize this dataset. Our code is available on GitHub website online (https://github.com/MrinalTyagi/SVD-CLAHE-and-BWCCE).

摘要

新冠疾病在过去两年对全球人口的健康造成了灾难性的影响。从胸部 X 光(CXR)图像中自动早期检测新冠疾病是人类对抗新冠病毒的至关重要的一步。在本文中,我们提出了一种新颖的数据增强技术,称为 SVD-CLAHE 增强和一种新颖的损失函数平衡加权分类交叉熵(BWCCE),以便从高度类别不平衡的胸部 X 射线图像数据集高效检测新冠疾病。我们提出的 SVD-CLAHE 增强方法由过采样和欠采样方法组成。首先,使用一种新颖的基于奇异值分解(SVD)的对比度增强和对比度受限自适应直方图均衡化(CLAHE)方法对少数类别的数据进行过采样。同时,在多数类中采用随机欠采样(RUS)方法,以使每个类别的图像数量更加平衡。此后,提出了平衡加权分类交叉熵(BWCCE)损失函数,以便在 SVD-CLAHE 增强之后进一步减少小类别的不平衡。实验结果表明,在增强数据集上的 ResNet-50 模型(通过 SVD-CLAHE 增强),结合 BWCCE 损失函数,达到了 95%的 F1 得分、94%的准确率、95%的召回率、96%的精度和 96%的 AUC,这远优于其他传统卷积神经网络(CNN)模型(如 InceptionV3、DenseNet-121、Xception 等)以及其他现有模型(如 Covid-Lite 和 Covid-Net)的结果。因此,我们提出的框架在新冠检测方面优于其他现有方法。此外,我们还在 VGG-19 模型上进行了相同的实验,以检查我们提出的框架的有效性。ResNet-50 和 VGG-19 模型均在 ImageNet 数据集上进行预训练。我们在 Kaggle 网站(https://www.kaggle.com/tr1gg3rtrash/balanced-augmented-covid-cxr-dataset)上公开共享了我们提出的增强数据集,以便任何研究社区都可以广泛利用该数据集。我们的代码可在 GitHub 网站上在线获取(https://github.com/MrinalTyagi/SVD-CLAHE-and-BWCCE)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8cc/9514969/520c054369d5/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8cc/9514969/5eb2d11825de/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8cc/9514969/3df30772c6f7/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8cc/9514969/12396d86ee36/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8cc/9514969/b6f67eb63b62/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8cc/9514969/fec96ed4160e/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8cc/9514969/bc7eba8f2556/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8cc/9514969/f02b56cc200c/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8cc/9514969/520c054369d5/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8cc/9514969/5eb2d11825de/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8cc/9514969/3df30772c6f7/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8cc/9514969/12396d86ee36/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8cc/9514969/b6f67eb63b62/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8cc/9514969/fec96ed4160e/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8cc/9514969/bc7eba8f2556/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8cc/9514969/f02b56cc200c/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8cc/9514969/520c054369d5/gr8_lrg.jpg

相似文献

[1]
SVD-CLAHE boosting and balanced loss function for Covid-19 detection from an imbalanced Chest X-Ray dataset.

Comput Biol Med. 2022-11

[2]
Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images.

Comput Biol Med. 2021-5

[3]
LCSB-inception: Reliable and effective light-chroma separated branches for Covid-19 detection from chest X-ray images.

Comput Biol Med. 2022-11

[4]
COVID-19 detection on chest X-ray images using Homomorphic Transformation and VGG inspired deep convolutional neural network.

Biocybern Biomed Eng. 2023

[5]
IRCM-Caps: An X-ray image detection method for COVID-19.

Clin Respir J. 2023-5

[6]
Chest X-ray image phase features for improved diagnosis of COVID-19 using convolutional neural network.

Int J Comput Assist Radiol Surg. 2021-2

[7]
COVID-19 detection in CT and CXR images using deep learning models.

Biogerontology. 2022-2

[8]
CovidXrayNet: Optimizing data augmentation and CNN hyperparameters for improved COVID-19 detection from CXR.

Comput Biol Med. 2021-6

[9]
COV-MobNets: a mobile networks ensemble model for diagnosis of COVID-19 based on chest X-ray images.

BMC Med Imaging. 2023-6-15

[10]
COVID-19 detection from chest X-ray images using CLAHE-YCrCb, LBP, and machine learning algorithms.

BMC Bioinformatics. 2024-1-17

引用本文的文献

[1]
Improving Image Quality of Chest Radiography with Artificial Intelligence-Supported Dual-Energy X-Ray Imaging System: An Observer Preference Study in Healthy Volunteers.

J Clin Med. 2025-3-19

[2]
Automated classification of chest X-rays: a deep learning approach with attention mechanisms.

BMC Med Imaging. 2025-3-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索