Suppr超能文献

利用人工智能支持的双能X射线成像系统提高胸部X线摄影图像质量:一项针对健康志愿者的观察者偏好研究。

Improving Image Quality of Chest Radiography with Artificial Intelligence-Supported Dual-Energy X-Ray Imaging System: An Observer Preference Study in Healthy Volunteers.

作者信息

Yoon Sung-Hyun, Kim Jihang, Kim Junghoon, Lee Jong-Hyuk, Choi Ilwoong, Shin Choul-Woo, Park Chang-Min

机构信息

Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea.

Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.

出版信息

J Clin Med. 2025 Mar 19;14(6):2091. doi: 10.3390/jcm14062091.

Abstract

To compare the image quality of chest radiography with a dual-energy X-ray imaging system using AI technology (DE-AI) to that of conventional chest radiography with a standard protocol. In this prospective study, 52 healthy volunteers underwent dual-energy chest radiography. Images were obtained using two exposures at 60 kVp and 120 kVp, separated by a 150 ms interval. Four images were generated for each participant: a conventional image, an enhanced standard image, a soft-tissue-selective image, and a bone-selective image. A machine learning model optimized the cancellation parameters for generating soft-tissue and bone-selective images. To enhance image quality, motion artifacts were minimized using Laplacian pyramid diffeomorphic registration, while a wavelet directional cycle-consistent adversarial network (WavCycleGAN) reduced image noise. Four radiologists independently evaluated the visibility of thirteen anatomical regions (eight soft-tissue regions and five bone regions) and the overall image with a five-point scale of preference. Pooled mean values were calculated for each anatomic region through meta-analysis using a random-effects model. Radiologists preferred DE-AI images to conventional chest radiographs in various anatomic regions. The enhanced standard image showed superior quality in 9 of 13 anatomic regions. Preference for the soft-tissue-selective image was statistically significant for three of eight anatomic regions. Preference for the bone-selective image was statistically significant for four of five anatomic regions. Images produced by DE-AI provide better visualization of thoracic structures.

摘要

比较使用人工智能技术的双能X线成像系统(DE-AI)的胸部X线摄影图像质量与采用标准方案的传统胸部X线摄影的图像质量。在这项前瞻性研究中,52名健康志愿者接受了双能胸部X线摄影。使用在60 kVp和120 kVp下的两次曝光获取图像,间隔150毫秒。为每位参与者生成四张图像:一张传统图像、一张增强标准图像、一张软组织选择性图像和一张骨骼选择性图像。一个机器学习模型优化了用于生成软组织和骨骼选择性图像的消除参数。为提高图像质量,使用拉普拉斯金字塔微分同胚配准将运动伪影降至最低,同时小波方向循环一致对抗网络(WavCycleGAN)降低图像噪声。四名放射科医生独立评估了13个解剖区域(8个软组织区域和5个骨骼区域)以及整体图像的可视性,采用五点偏好量表。通过使用随机效应模型的荟萃分析计算每个解剖区域的合并平均值。在各个解剖区域,放射科医生更喜欢DE-AI图像而非传统胸部X线片。增强标准图像在13个解剖区域中的9个区域显示出更高的质量。在8个解剖区域中的3个区域,对软组织选择性图像的偏好具有统计学意义。在5个解剖区域中的4个区域,对骨骼选择性图像的偏好具有统计学意义。DE-AI生成的图像能更好地显示胸部结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef0/11942644/6e632af486b2/jcm-14-02091-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验