文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用 CLAHE-YCrCb、LBP 和机器学习算法从胸部 X 光图像中检测 COVID-19。

COVID-19 detection from chest X-ray images using CLAHE-YCrCb, LBP, and machine learning algorithms.

机构信息

Department of Computer Science and Technology, Beijing Institute of Technology, Beijing, China.

Computer Science and Information Technology, University of Azad Jammu and Kashmir, Kashmir, Pakistan.

出版信息

BMC Bioinformatics. 2024 Jan 17;25(1):28. doi: 10.1186/s12859-023-05427-5.


DOI:10.1186/s12859-023-05427-5
PMID:38233764
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10792799/
Abstract

BACKGROUND: COVID-19 is a disease that caused a contagious respiratory ailment that killed and infected hundreds of millions. It is necessary to develop a computer-based tool that is fast, precise, and inexpensive to detect COVID-19 efficiently. Recent studies revealed that machine learning and deep learning models accurately detect COVID-19 using chest X-ray (CXR) images. However, they exhibit notable limitations, such as a large amount of data to train, larger feature vector sizes, enormous trainable parameters, expensive computational resources (GPUs), and longer run-time. RESULTS: In this study, we proposed a new approach to address some of the above-mentioned limitations. The proposed model involves the following steps: First, we use contrast limited adaptive histogram equalization (CLAHE) to enhance the contrast of CXR images. The resulting images are converted from CLAHE to YCrCb color space. We estimate reflectance from chrominance using the Illumination-Reflectance model. Finally, we use a normalized local binary patterns histogram generated from reflectance (Cr) and YCb as the classification feature vector. Decision tree, Naive Bayes, support vector machine, K-nearest neighbor, and logistic regression were used as the classification algorithms. The performance evaluation on the test set indicates that the proposed approach is superior, with accuracy rates of 99.01%, 100%, and 98.46% across three different datasets, respectively. Naive Bayes, a probabilistic machine learning algorithm, emerged as the most resilient. CONCLUSION: Our proposed method uses fewer handcrafted features, affordable computational resources, and less runtime than existing state-of-the-art approaches. Emerging nations where radiologists are in short supply can adopt this prototype. We made both coding materials and datasets accessible to the general public for further improvement. Check the manuscript's availability of the data and materials under the declaration section for access.

摘要

背景:COVID-19 是一种传染性呼吸道疾病,已导致数亿人死亡和感染。因此,有必要开发一种快速、准确且廉价的计算机工具来有效地检测 COVID-19。最近的研究表明,机器学习和深度学习模型可以使用胸部 X 光(CXR)图像准确地检测 COVID-19。然而,它们存在显著的局限性,例如需要大量的数据进行训练、更大的特征向量大小、大量的可训练参数、昂贵的计算资源(GPU)和更长的运行时间。

结果:在这项研究中,我们提出了一种新的方法来解决上述一些限制。所提出的模型包括以下步骤:首先,我们使用对比度受限自适应直方图均衡(CLAHE)来增强 CXR 图像的对比度。将经过 CLAHE 处理的图像转换为 YCrCb 颜色空间。我们使用照明反射模型从色度估计反射率。最后,我们使用从反射率(Cr)和 YCb 生成的归一化局部二值模式直方图作为分类特征向量。决策树、朴素贝叶斯、支持向量机、K-最近邻和逻辑回归被用作分类算法。在测试集上的性能评估表明,所提出的方法表现出色,在三个不同的数据集上的准确率分别为 99.01%、100%和 98.46%。朴素贝叶斯是一种概率机器学习算法,表现出最强的稳健性。

结论:与现有的最先进方法相比,我们提出的方法使用更少的手工制作特征、更实惠的计算资源和更短的运行时间。放射科医生短缺的新兴国家可以采用这种原型。我们将编码材料和数据集都提供给公众,以便进一步改进。在声明部分检查数据和材料的可用性,以获取访问权限。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/c15ce7f09866/12859_2023_5427_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/07abdfc5959a/12859_2023_5427_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/c0a4817e8fb6/12859_2023_5427_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/3a0e68a17c98/12859_2023_5427_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/b788431ab971/12859_2023_5427_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/296ea34c9d5d/12859_2023_5427_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/e10316f2b888/12859_2023_5427_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/2ab7b411cd8d/12859_2023_5427_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/a31d640032be/12859_2023_5427_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/0bf07ff1b4ae/12859_2023_5427_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/d5dcc8fbe380/12859_2023_5427_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/7a06660d606b/12859_2023_5427_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/06f56ed5f221/12859_2023_5427_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/ac6da44e1bf6/12859_2023_5427_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/a455a1d98ecf/12859_2023_5427_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/519b0a1904d6/12859_2023_5427_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/c15ce7f09866/12859_2023_5427_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/07abdfc5959a/12859_2023_5427_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/c0a4817e8fb6/12859_2023_5427_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/3a0e68a17c98/12859_2023_5427_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/b788431ab971/12859_2023_5427_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/296ea34c9d5d/12859_2023_5427_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/e10316f2b888/12859_2023_5427_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/2ab7b411cd8d/12859_2023_5427_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/a31d640032be/12859_2023_5427_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/0bf07ff1b4ae/12859_2023_5427_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/d5dcc8fbe380/12859_2023_5427_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/7a06660d606b/12859_2023_5427_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/06f56ed5f221/12859_2023_5427_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/ac6da44e1bf6/12859_2023_5427_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/a455a1d98ecf/12859_2023_5427_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/519b0a1904d6/12859_2023_5427_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edbf/10792799/c15ce7f09866/12859_2023_5427_Fig16_HTML.jpg

相似文献

[1]
COVID-19 detection from chest X-ray images using CLAHE-YCrCb, LBP, and machine learning algorithms.

BMC Bioinformatics. 2024-1-17

[2]
SVD-CLAHE boosting and balanced loss function for Covid-19 detection from an imbalanced Chest X-Ray dataset.

Comput Biol Med. 2022-11

[3]
LCSB-inception: Reliable and effective light-chroma separated branches for Covid-19 detection from chest X-ray images.

Comput Biol Med. 2022-11

[4]
An Analysis of New Feature Extraction Methods Based on Machine Learning Methods for Classification Radiological Images.

Comput Intell Neurosci. 2022

[5]
Multi-Channel Based Image Processing Scheme for Pneumonia Identification.

Diagnostics (Basel). 2022-1-27

[6]
Optimised genetic algorithm-extreme learning machine approach for automatic COVID-19 detection.

PLoS One. 2020-12-15

[7]
Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images.

Comput Biol Med. 2021-5

[8]
A Deep Learning Model for Diagnosing COVID-19 and Pneumonia through X-ray.

Curr Med Imaging. 2023

[9]
Complex features extraction with deep learning model for the detection of COVID19 from CT scan images using ensemble based machine learning approach.

Expert Syst Appl. 2022-6-1

[10]
Machine Learning Model Based on Radiomic Features for Differentiation between COVID-19 and Pneumonia on Chest X-ray.

Sensors (Basel). 2022-9-5

本文引用的文献

[1]
COVID-19 detection and analysis from lung CT images using novel channel boosted CNNs.

Expert Syst Appl. 2023-11-1

[2]
Semi-supervised COVID-19 CT image segmentation using deep generative models.

BMC Bioinformatics. 2022-8-17

[3]
CAD systems for COVID-19 diagnosis and disease stage classification by segmentation of infected regions from CT images.

BMC Bioinformatics. 2022-7-6

[4]
Deep GRU-CNN Model for COVID-19 Detection From Chest X-Rays Data.

IEEE Access. 2021-5-5

[5]
RESCOVIDTCNnet: A residual neural network-based framework for COVID-19 detection using TCN and EWT with chest X-ray images.

Expert Syst Appl. 2022-10-15

[6]
A review of deep learning-based detection methods for COVID-19.

Comput Biol Med. 2022-4

[7]
COVID-19 Detection Through Transfer Learning Using Multimodal Imaging Data.

IEEE Access. 2020-8-14

[8]
Local binary pattern and deep learning feature extraction fusion for COVID-19 detection on computed tomography images.

Expert Syst. 2022-3

[9]
A deep learning based approach for automatic detection of COVID-19 cases using chest X-ray images.

Biomed Signal Process Control. 2022-1

[10]
COVID-19 diagnosis system by deep learning approaches.

Expert Syst. 2022-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索