Suppr超能文献

LCSB-inception:从胸部 X 光图像中可靠且有效地检测新冠病毒的光-色分离分支。

LCSB-inception: Reliable and effective light-chroma separated branches for Covid-19 detection from chest X-ray images.

机构信息

School of Information and Software Engineering, University of Electronic Science and Technology of China, Sichuan, PR China.

School of Computer Science and Engineering, University of Electronic Science and Technology of China, Sichuan, PR China.

出版信息

Comput Biol Med. 2022 Nov;150:106195. doi: 10.1016/j.compbiomed.2022.106195. Epub 2022 Oct 14.

Abstract

According to the World Health Organization, an estimate of more than five million infections and 355,000 deaths have been recorded worldwide since the emergence of the coronavirus disease (COVID-19). Various researchers have developed interesting and effective deep learning frameworks to tackle this disease. However, poor feature extraction from the Chest X-ray images and the high computational cost of the available models impose difficulties to an accurate and fast Covid-19 detection framework. Thus, the major purpose of this study is to offer an accurate and efficient approach for extracting COVID-19 features from chest X-rays that is also less computationally expensive than earlier research. To achieve the specified goal, we explored the Inception V3 deep artificial neural network. This study proposed LCSB-Inception; a two-path (L and AB channel) Inception V3 network along the first three convolutional layers. The RGB input image is first transformed to CIE LAB coordinates (L channel which is aimed at learning the textural and edge features of the Chest X-Ray and AB channel which is aimed at learning the color variations of the Chest X-ray images). The L achromatic channel and the AB channels filters are set to 50%L-50%AB. This method saves between one-third and one-half of the parameters in the divided branches. We further introduced a global second-order pooling at the last two convolutional blocks for more robust image feature extraction against the conventional max-pooling. The detection accuracy of the LCSB-Inception is further improved by employing the Contrast Limited Adaptive Histogram Equalization (CLAHE) image enhancement technique on the input image before feeding them to the network. The proposed LCSB-Inception network is experimented on using two loss functions (Categorically smooth loss and categorically Cross-entropy) and two learning rates whereas Accuracy, Precision, Sensitivity, Specificity F1-Score, and AUC Score were used for evaluation via the chestX-ray-15k (Data_1) and COVID-19 Radiography dataset (Data_2). The proposed models produced an acceptable outcome with an accuracy of 0.97867 (Data_1) and 0.98199 (Data_2) according to the experimental findings. In terms of COVID-19 identification, the suggested models outperform conventional deep learning models and other state-of-the-art techniques presented in the literature based on the results.

摘要

据世界卫生组织称,自冠状病毒病(COVID-19)出现以来,全球已记录了超过 500 万例感染和 35.5 万人死亡。各种研究人员已经开发出有趣且有效的深度学习框架来应对这种疾病。然而,从胸部 X 光图像中提取特征的能力较差,以及现有模型的计算成本较高,给准确和快速的 COVID-19 检测框架带来了困难。因此,本研究的主要目的是提供一种从胸部 X 光片中提取 COVID-19 特征的准确且高效的方法,该方法的计算成本也低于早期研究。为了实现既定目标,我们探索了 Inception V3 深度学习神经网络。本研究提出了 LCSB-Inception;这是一个具有两条路径(L 和 AB 通道)的 Inception V3 网络,沿着前三个卷积层进行。RGB 输入图像首先转换为 CIE LAB 坐标(L 通道旨在学习胸部 X 射线的纹理和边缘特征,AB 通道旨在学习胸部 X 射线图像的颜色变化)。L 消色差通道和 AB 通道滤波器设置为 50%L-50%AB。这种方法在划分的分支中节省了三分之一到一半的参数。我们进一步在最后两个卷积块上引入全局二阶池化,以提高对传统最大池化的稳健图像特征提取能力。通过在将输入图像输入网络之前对其应用对比度受限自适应直方图均衡化(CLAHE)图像增强技术,进一步提高了 LCSB-Inception 的检测精度。使用两种损失函数(分类平滑损失和分类交叉熵)和两种学习率对提出的 LCSB-Inception 网络进行了实验,而准确性、精度、敏感性、特异性 F1 分数和 AUC 分数则通过 chestX-ray-15k(Data_1)和 COVID-19 射线照相数据集(Data_2)进行评估。根据实验结果,提出的模型产生了可接受的结果,准确率为 0.97867(Data_1)和 0.98199(Data_2)。就 COVID-19 识别而言,根据结果,所提出的模型优于传统的深度学习模型和文献中提出的其他最先进技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aefb/9561436/b4dddb1626a0/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验