文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

主体客体络合介导配体入侵实现可控 DNA 杂交。

Controllable DNA hybridization by host-guest complexation-mediated ligand invasion.

机构信息

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.

出版信息

Nat Commun. 2022 Oct 8;13(1):5936. doi: 10.1038/s41467-022-33738-3.


DOI:10.1038/s41467-022-33738-3
PMID:36209265
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9547909/
Abstract

Dynamic regulation of nucleic acid hybridization is fundamental for switchable nanostructures and controllable functionalities of nucleic acids in both material developments and biological regulations. In this work, we report a ligand-invasion pathway to regulate DNA hybridization based on host-guest interactions. We propose a concept of recognition handle as the ligand binding site to disrupt Watson-Crick base pairs and induce the direct dissociation of DNA duplex structures. Taking cucurbit[7]uril as the invading ligand and its guest molecules that are integrated into the nucleobase as recognition handles, we successfully achieve orthogonal and reversible manipulation of DNA duplex dissociation and recovery. Moreover, we further apply this approach of ligand-controlled nucleic acid hybridization for functional regulations of both the RNA-cleaving DNAzyme in test tubes and the antisense oligonucleotide in living cells. This ligand-invasion strategy establishes a general pathway toward dynamic control of nucleic acid structures and functionalities by supramolecular interactions.

摘要

核酸杂交的动态调控对于核酸在材料发展和生物调控中的可切换纳米结构和可控功能至关重要。在这项工作中,我们报道了一种基于主客体相互作用的配体入侵途径来调节 DNA 杂交。我们提出了识别手柄的概念作为配体结合位点,以破坏 Watson-Crick 碱基对并诱导 DNA 双链结构的直接解离。以葫芦[7]脲作为入侵配体,其整合到核碱基中的客体分子作为识别手柄,我们成功地实现了 DNA 双链解离和恢复的正交和可逆操作。此外,我们进一步将这种配体控制的核酸杂交方法应用于试管中 RNA 切割 DNA 酶和活细胞中反义寡核苷酸的功能调控。这种配体入侵策略通过超分子相互作用为动态控制核酸结构和功能建立了一种通用途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8b/9547909/dc3407d84274/41467_2022_33738_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8b/9547909/816d65d29b9b/41467_2022_33738_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8b/9547909/e7b996da2136/41467_2022_33738_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8b/9547909/74976769991d/41467_2022_33738_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8b/9547909/6200ba7bfdc9/41467_2022_33738_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8b/9547909/637b3a1d6bb9/41467_2022_33738_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8b/9547909/0478f196e77d/41467_2022_33738_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8b/9547909/dc3407d84274/41467_2022_33738_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8b/9547909/816d65d29b9b/41467_2022_33738_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8b/9547909/e7b996da2136/41467_2022_33738_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8b/9547909/74976769991d/41467_2022_33738_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8b/9547909/6200ba7bfdc9/41467_2022_33738_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8b/9547909/637b3a1d6bb9/41467_2022_33738_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8b/9547909/0478f196e77d/41467_2022_33738_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8b/9547909/dc3407d84274/41467_2022_33738_Fig7_HTML.jpg

相似文献

[1]
Controllable DNA hybridization by host-guest complexation-mediated ligand invasion.

Nat Commun. 2022-10-8

[2]
Stereospecificity of oligonucleotide interactions revisited: no evidence for heterochiral hybridization and ribozyme/DNAzyme activity.

PLoS One. 2015-2-13

[3]
Discovery and Biosensing Applications of Diverse RNA-Cleaving DNAzymes.

Acc Chem Res. 2017-8-14

[4]
Evolution of Hybridization Probes to DNA Machines and Robots.

Acc Chem Res. 2019-6-20

[5]
Improved DNA hybridization parameters by Twisted Intercalating Nucleic Acid (TINA).

Dan Med J. 2012-1

[6]
Origins of high sequence selectivity: a stopped-flow kinetics study of DNA/RNA hybridization by duplex- and triplex-forming oligonucleotides.

Biochemistry. 1995-8-1

[7]
Toward an Expanded Genome: Structural and Computational Characterization of an Artificially Expanded Genetic Information System.

Acc Chem Res. 2017-6-8

[8]
Watson-Crick versus Hoogsteen Base Pairs: Chemical Strategy to Encode and Express Genetic Information in Life.

Acc Chem Res. 2021-5-4

[9]
Discovering antisense reagents by hybridization of RNA to oligonucleotide arrays.

Ciba Found Symp. 1997

[10]
Modulation of nucleic acid structure by ligand binding: induction of a DNA.RNA.DNA hybrid triplex by DAPI intercalation.

Bioorg Med Chem. 1997-6

引用本文的文献

[1]
Manipulating DNA and RNA structures via click-to-release caged nucleic acids for biological and biomedical applications.

Nucleic Acids Res. 2025-6-20

[2]
Conditional Control of CRISPR/Cas9 Function by Chemically Modified Oligonucleotides.

Molecules. 2025-4-28

[3]
Reversible Control of Gene Expression by Guest-Modified Adenosines in a Cell-Free System via Host-Guest Interaction.

J Am Chem Soc. 2024-7-10

[4]
Self-Assembled Nanocomposite DOX/TPOR@CB[7] for Enhanced Synergistic Photodynamic Therapy and Chemotherapy in Neuroblastoma.

Pharmaceutics. 2024-6-18

[5]
Integration of G-Quadruplex and Pyrene as a Simple and Efficient Ratiometric Fluorescent Platform That Programmed by Contrary Logic Pair for Highly Sensitive and Selective Coralyne (COR) Detection.

Biosensors (Basel). 2023-4-19

[6]
Host-Guest Interactions of Zirconium-Based Metal-Organic Framework with Ionic Liquid.

Molecules. 2023-3-21

本文引用的文献

[1]
Supramolecular CRISPR-OFF switches with host-guest chemistry.

Nucleic Acids Res. 2022-2-22

[2]
Photoresponsive DNA materials and their applications.

Chem Soc Rev. 2022-1-24

[3]
Photoinduced azobenzene-modified DNA dehybridization: insights into local and cooperativity effects from a molecular dynamics study.

Phys Chem Chem Phys. 2021-11-17

[4]
DNA Balance for Native Characterization of Chemically Modified DNA.

J Am Chem Soc. 2021-9-1

[5]
A reference scale of cucurbit[7]uril binding affinities.

Org Biomol Chem. 2021-10-14

[6]
Antisense technology: an overview and prospectus.

Nat Rev Drug Discov. 2021-6

[7]
Controlling and enhancing CRISPR systems.

Nat Chem Biol. 2021-1

[8]
Cucurbiturils in nucleic acids research.

Chem Commun (Camb). 2020-12-21

[9]
Dynamic DNA Assemblies in Biomedical Applications.

Adv Sci (Weinh). 2020-6-8

[10]
Catalytic RNA, ribozyme, and its applications in synthetic biology.

Biotechnol Adv. 2019-10-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索