Suppr超能文献

杂交探针到 DNA 机器和机器人的演变。

Evolution of Hybridization Probes to DNA Machines and Robots.

机构信息

Department of Chemistry , University of Central Florida , 4111 Libra Drive , Physical Sciences 255, Orlando , Florida 32816-2366 , United States.

出版信息

Acc Chem Res. 2019 Jul 16;52(7):1949-1956. doi: 10.1021/acs.accounts.9b00098. Epub 2019 Jun 20.

Abstract

Hybridization probes are RNA or DNA oligonucleotides or their analogs that bind to specific nucleotide sequences in targeted nucleic acids (analytes) via Watson-Crick base pairs to form probe-analyte hybrids. Formation of a stable hybrid would indicate the presence of a DNA or RNA fragment complementary to the known probe sequence. Some of the well-known technologies that rely on nucleic acid hybridization are TaqMan and molecular beacon (MB) probes, fluorescent hybridization (FISH), polymerase chain reaction (PCR), antisense, siRNA, and CRISPR/cas9, among others. Although invaluable tools for DNA and RNA recognition, hybridization probes suffer from several common disadvantages including low selectivity under physiological conditions, low affinity to folded single-stranded RNA and double-stranded DNA, and high cost of dye-labeled and chemically modified probes. Hybridization probes are evolving into multifunctional molecular devices (dubbed here "multicomponent probes", "DNA machines", and "DNA robots") to satisfy complex and often contradictory requirements of modern biomedical applications. In the definition used here, "multicomponent probes" are DNA probes that use more than one oligonucleotide complementary to an analyzed sequence. A "DNA machine" is an association of a discrete number of DNA strands that undergoes structural rearrangements in response to the presence of a specific analyte. Unlike multicomponent probes, DNA machines unify several functional components in a single association even in the absence of a target. DNA robots are DNA machines equipped with computational (analytic) capabilities. This Account is devoted to an overview of the ongoing evolution of hybridization probes to DNA machines and robots. The Account starts with a brief excursion to historically significant and currently used instantaneous probes. The majority of the text is devoted to the design of (i) multicomponent probes and (ii) DNA machines for nucleic acid recognition and analysis. The fundamental advantage of both designs is their ability to simultaneously address multiple problems of RNA/DNA analysis. This is achieved by modular design, in which several specialized functional components are used simultaneously for recognition of RNA or DNA analytes. The Account is concluded with the analysis of perspectives for further evolution of DNA machines into DNA robots.

摘要

杂交探针是通过 Watson-Crick 碱基配对与目标核酸(分析物)中的特定核苷酸序列结合的 RNA 或 DNA 寡核苷酸或其类似物,形成探针-分析物杂交体。稳定杂交的形成表明存在与已知探针序列互补的 DNA 或 RNA 片段。依赖于核酸杂交的一些知名技术包括 TaqMan 和分子信标 (MB) 探针、荧光杂交 (FISH)、聚合酶链反应 (PCR)、反义寡核苷酸、siRNA 和 CRISPR/cas9 等。尽管杂交探针是 DNA 和 RNA 识别的宝贵工具,但它们存在几个共同的缺点,包括在生理条件下选择性低、对折叠的单链 RNA 和双链 DNA 的亲和力低以及染料标记和化学修饰探针的成本高。杂交探针正在演变成多功能分子器件(这里称为“多组分探针”、“DNA 机器”和“DNA 机器人”),以满足现代生物医学应用的复杂且经常相互矛盾的要求。在本文中使用的定义中,“多组分探针”是指使用多个与分析序列互补的寡核苷酸的 DNA 探针。“DNA 机器”是指在特定分析物存在下经历结构重排的离散数量的 DNA 链的缔合。与多组分探针不同,DNA 机器即使在没有靶标的情况下也能将几个功能组件统一在一个缔合中。DNA 机器人是配备计算(分析)能力的 DNA 机器。本账户致力于概述杂交探针向 DNA 机器和机器人的不断发展。该账户首先简要介绍了历史上有意义且目前正在使用的瞬时探针。文本的大部分内容致力于设计 (i) 用于核酸识别和分析的多组分探针和 (ii) DNA 机器。这两种设计的基本优势是它们能够同时解决 RNA/DNA 分析的多个问题。这是通过模块化设计实现的,其中同时使用几个专门的功能组件来识别 RNA 或 DNA 分析物。该账户以分析 DNA 机器进一步演化为 DNA 机器人的前景结束。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验