Suppr超能文献

针对空间混杂因素的光谱调整。

Spectral adjustment for spatial confounding.

作者信息

Guan Yawen, Page Garritt L, Reich Brian J, Ventrucci Massimo, Yang Shu

机构信息

Department of Statistics, University of Nebraska, 343C Hardin Hall, Lincoln, Nebraska 68583, U.S.A.

Department of Statistics, Brigham Young University, 238 TMCB, Provo, Utah 84602, U.S.A.

出版信息

Biometrika. 2023 Sep;110(3):699-719. doi: 10.1093/biomet/asac069. Epub 2022 Dec 21.

Abstract

Adjusting for an unmeasured confounder is generally an intractable problem, but in the spatial setting it may be possible under certain conditions. We derive necessary conditions on the coherence between the exposure and the unmeasured confounder that ensure the effect of exposure is estimable. We specify our model and assumptions in the spectral domain to allow for different degrees of confounding at different spatial resolutions. One assumption that ensures identifiability is that confounding present at global scales dissipates at local scales. We show that this assumption in the spectral domain is equivalent to adjusting for global-scale confounding in the spatial domain by adding a spatially smoothed version of the exposure to the mean of the response variable. Within this general framework, we propose a sequence of confounder adjustment methods that range from parametric adjustments based on the Matérn coherence function to more robust semiparametric methods that use smoothing splines. These ideas are applied to areal and geostatistical data for both simulated and real datasets.

摘要

对一个未测量的混杂因素进行调整通常是一个棘手的问题,但在空间环境中,在某些条件下可能是可行的。我们推导了暴露因素与未测量混杂因素之间的一致性的必要条件,以确保暴露效应是可估计的。我们在谱域中指定模型和假设,以允许在不同空间分辨率下存在不同程度的混杂。一个确保可识别性的假设是,在全局尺度上存在的混杂在局部尺度上消散。我们表明,谱域中的这个假设等同于在空间域中通过将暴露因素的空间平滑版本添加到响应变量的均值中来调整全局尺度的混杂。在这个一般框架内,我们提出了一系列混杂因素调整方法,范围从基于Matérn相干函数的参数调整到使用平滑样条的更稳健的半参数方法。这些想法被应用于模拟和真实数据集的区域数据和地质统计数据。

相似文献

1
Spectral adjustment for spatial confounding.
Biometrika. 2023 Sep;110(3):699-719. doi: 10.1093/biomet/asac069. Epub 2022 Dec 21.
2
Selecting a Scale for Spatial Confounding Adjustment.
J R Stat Soc Ser A Stat Soc. 2020 Jun;183(3):1121-1143. doi: 10.1111/rssa.12556. Epub 2020 Mar 11.
3
Adjustment for unmeasured confounding through informative priors for the confounder-outcome relation.
BMC Med Res Methodol. 2018 Dec 22;18(1):174. doi: 10.1186/s12874-018-0634-3.
5
Sensitivity analysis: distributional assumptions and confounding assumptions.
Biometrics. 2008 Jun;64(2):645-9. doi: 10.1111/j.1541-0420.2008.01024.x.
6
Multiply robust causal inference with double-negative control adjustment for categorical unmeasured confounding.
J R Stat Soc Series B Stat Methodol. 2020 Apr;82(2):521-540. doi: 10.1111/rssb.12361. Epub 2020 Jan 22.
7
Semiparametric estimation of cross-covariance functions for multivariate random fields.
Biometrics. 2021 Jun;77(2):547-560. doi: 10.1111/biom.13323. Epub 2020 Jul 18.
8
A More Efficient Causal Mediator Model Without the No-Unmeasured-Confounder Assumption.
Multivariate Behav Res. 2020 Jul-Aug;55(4):531-552. doi: 10.1080/00273171.2019.1656051. Epub 2019 Sep 9.
9
Sensitivity analysis of unmeasured confounding in causal inference based on exponential tilting and super learner.
J Appl Stat. 2021 Nov 10;50(3):744-760. doi: 10.1080/02664763.2021.1999398. eCollection 2023.
10
Assessing Techniques for Quantifying the Impact of Bias Due to an Unmeasured Confounder: An Applied Example.
Clin Epidemiol. 2021 Jul 27;13:627-635. doi: 10.2147/CLEP.S313613. eCollection 2021.

引用本文的文献

1
Consistency of common spatial estimators under spatial confounding.
Biometrika. 2025;112(2). doi: 10.1093/biomet/asae070. Epub 2024 Dec 23.
2
Two-stage estimators for spatial confounding with point-referenced data.
Biometrics. 2025 Jul 3;81(3). doi: 10.1093/biomtc/ujaf093.
3
Estimating spatially varying health effects of wildland fire smoke using mobile health data.
J R Stat Soc Ser C Appl Stat. 2024 Jul 16;73(5):1242-1261. doi: 10.1093/jrsssc/qlae034. eCollection 2024 Nov.
4
A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications.
Int Stat Rev. 2021 Dec;89(3):605-634. doi: 10.1111/insr.12452. Epub 2021 May 31.
5
Discussion on "Spatial+: A novel approach to spatial confounding" by Dupont, Wood, and Augustin.
Biometrics. 2022 Dec;78(4):1291-1294. doi: 10.1111/biom.13651. Epub 2022 Mar 30.

本文引用的文献

1
A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications.
Int Stat Rev. 2021 Dec;89(3):605-634. doi: 10.1111/insr.12452. Epub 2021 May 31.
2
RESTRICTED SPATIAL REGRESSION METHODS: IMPLICATIONS FOR INFERENCE.
J Am Stat Assoc. 2022;117(537):482-494. doi: 10.1080/01621459.2020.1788949. Epub 2020 Aug 18.
3
Spatial+: A novel approach to spatial confounding.
Biometrics. 2022 Dec;78(4):1279-1290. doi: 10.1111/biom.13656. Epub 2022 Mar 30.
5
Selecting a Scale for Spatial Confounding Adjustment.
J R Stat Soc Ser A Stat Soc. 2020 Jun;183(3):1121-1143. doi: 10.1111/rssa.12556. Epub 2020 Mar 11.
6
Semiparametric estimation of cross-covariance functions for multivariate random fields.
Biometrics. 2021 Jun;77(2):547-560. doi: 10.1111/biom.13323. Epub 2020 Jul 18.
8
A study of problems encountered in Granger causality analysis from a neuroscience perspective.
Proc Natl Acad Sci U S A. 2017 Aug 22;114(34):E7063-E7072. doi: 10.1073/pnas.1704663114. Epub 2017 Aug 4.
9
Nonparametric Bayesian models for a spatial covariance.
Stat Methodol. 2012;9(1-2):265-274. doi: 10.1016/j.stamet.2011.01.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验