Guan Yawen, Page Garritt L, Reich Brian J, Ventrucci Massimo, Yang Shu
Department of Statistics, University of Nebraska, 343C Hardin Hall, Lincoln, Nebraska 68583, U.S.A.
Department of Statistics, Brigham Young University, 238 TMCB, Provo, Utah 84602, U.S.A.
Biometrika. 2023 Sep;110(3):699-719. doi: 10.1093/biomet/asac069. Epub 2022 Dec 21.
Adjusting for an unmeasured confounder is generally an intractable problem, but in the spatial setting it may be possible under certain conditions. We derive necessary conditions on the coherence between the exposure and the unmeasured confounder that ensure the effect of exposure is estimable. We specify our model and assumptions in the spectral domain to allow for different degrees of confounding at different spatial resolutions. One assumption that ensures identifiability is that confounding present at global scales dissipates at local scales. We show that this assumption in the spectral domain is equivalent to adjusting for global-scale confounding in the spatial domain by adding a spatially smoothed version of the exposure to the mean of the response variable. Within this general framework, we propose a sequence of confounder adjustment methods that range from parametric adjustments based on the Matérn coherence function to more robust semiparametric methods that use smoothing splines. These ideas are applied to areal and geostatistical data for both simulated and real datasets.
对一个未测量的混杂因素进行调整通常是一个棘手的问题,但在空间环境中,在某些条件下可能是可行的。我们推导了暴露因素与未测量混杂因素之间的一致性的必要条件,以确保暴露效应是可估计的。我们在谱域中指定模型和假设,以允许在不同空间分辨率下存在不同程度的混杂。一个确保可识别性的假设是,在全局尺度上存在的混杂在局部尺度上消散。我们表明,谱域中的这个假设等同于在空间域中通过将暴露因素的空间平滑版本添加到响应变量的均值中来调整全局尺度的混杂。在这个一般框架内,我们提出了一系列混杂因素调整方法,范围从基于Matérn相干函数的参数调整到使用平滑样条的更稳健的半参数方法。这些想法被应用于模拟和真实数据集的区域数据和地质统计数据。