Suppr超能文献

基于活动追踪器数据的机器学习方法对心脏病患者队列中自我报告健康状况的分类。

A Machine Learning Approach to Classifying Self-Reported Health Status in a Cohort of Patients With Heart Disease Using Activity Tracker Data.

出版信息

IEEE J Biomed Health Inform. 2020 Mar;24(3):878-884. doi: 10.1109/JBHI.2019.2922178. Epub 2019 Jun 11.

Abstract

Constructing statistical models using personal sensor data could allow for tracking health status over time, thereby enabling the possibility of early intervention. The goal of this study was to use machine learning algorithms to classify patient-reported outcomes (PROs) using activity tracker data in a cohort of patients with stable ischemic heart disease (SIHD). A population of 182 patients with SIHD were monitored over a period of 12 weeks. Each subject received a Fitbit Charge 2 device to record daily activity data, and each subject completed eight Patient-Reported Outcomes Measurement Information Systems short form at the end of each week as a self-assessment of their health status. Two models were built to classify PRO scores using activity tracker data. The first model treated each week independently, whereas the second used a hidden Markov model (HMM) to take advantage of correlations between successive weeks. Retrospective analysis compared the classification accuracy of the two models and the importance of each feature. In the independent model, a random forest classifier achieved a mean area under curve (AUC) of 0.76 for classifying the physical function PRO. The HMM model achieved significantly better AUCs for all PROs (p < 0.05) other than Fatigue and Sleep Disturbance, with a highest mean AUC of 0.79 for the physical function-short form 10a. Our study demonstrates the ability of activity tracker data to classify health status over time. These results suggest that patient outcomes can be monitored in real time using activity trackers.

摘要

利用个人传感器数据构建统计模型可以跟踪健康状况随时间的变化,从而有可能实现早期干预。本研究的目的是使用机器学习算法,根据活动跟踪器数据对稳定型缺血性心脏病(SIHD)患者队列中的患者报告的结果(PROs)进行分类。对 182 名 SIHD 患者进行了为期 12 周的监测。每位受试者都收到了 Fitbit Charge 2 设备来记录日常活动数据,每位受试者在每周结束时完成八项患者报告的测量信息系统简表,以自我评估他们的健康状况。构建了两个模型来使用活动跟踪器数据对 PRO 评分进行分类。第一个模型独立地处理每个星期,而第二个模型使用隐马尔可夫模型(HMM)来利用连续几周之间的相关性。回顾性分析比较了两种模型的分类准确性和每个特征的重要性。在独立模型中,随机森林分类器对物理功能 PRO 的分类的平均曲线下面积(AUC)为 0.76。HMM 模型对所有 PRO 除疲劳和睡眠障碍外,除了疲劳和睡眠障碍外,所有 PRO 的 AUC 均显著更好(p<0.05),物理功能简表 10a 的 AUC 最高为 0.79。我们的研究证明了活动跟踪器数据能够随时间对健康状况进行分类。这些结果表明,可以使用活动跟踪器实时监测患者的结果。

相似文献

1
A Machine Learning Approach to Classifying Self-Reported Health Status in a Cohort of Patients With Heart Disease Using Activity Tracker Data.
IEEE J Biomed Health Inform. 2020 Mar;24(3):878-884. doi: 10.1109/JBHI.2019.2922178. Epub 2019 Jun 11.
7
Determinants for Sustained Use of an Activity Tracker: Observational Study.
JMIR Mhealth Uhealth. 2017 Oct 30;5(10):e164. doi: 10.2196/mhealth.7311.

引用本文的文献

4
Predictive Data Analytics in Telecare and Telehealth: Systematic Scoping Review.
Online J Public Health Inform. 2024 Aug 7;16:e57618. doi: 10.2196/57618.
5
6
A deep learning framework for noninvasive fetal ECG signal extraction.
Front Physiol. 2024 Apr 22;15:1329313. doi: 10.3389/fphys.2024.1329313. eCollection 2024.
8
Unpacking the Drivers of Dissatisfaction and Satisfaction in a Fitness Mobile Application.
Behav Sci (Basel). 2023 Sep 21;13(9):782. doi: 10.3390/bs13090782.
10
Assessment of Remote Vital Sign Monitoring and Alarms in a Real-World Healthcare at Home Dataset.
Bioengineering (Basel). 2022 Dec 28;10(1):37. doi: 10.3390/bioengineering10010037.

本文引用的文献

1
Scalable and accurate deep learning with electronic health records.
NPJ Digit Med. 2018 May 8;1:18. doi: 10.1038/s41746-018-0029-1. eCollection 2018.
4
Assessment of the Fitbit Charge 2 for monitoring heart rate.
PLoS One. 2018 Feb 28;13(2):e0192691. doi: 10.1371/journal.pone.0192691. eCollection 2018.
5
Determinants for Sustained Use of an Activity Tracker: Observational Study.
JMIR Mhealth Uhealth. 2017 Oct 30;5(10):e164. doi: 10.2196/mhealth.7311.
6
Harnessing the Potential of Wearable Activity Trackers for Heart Failure Self-Care.
Curr Heart Fail Rep. 2017 Feb;14(1):23-29. doi: 10.1007/s11897-017-0318-z.
7
A Bayesian model for estimating multi-state disease progression.
Comput Biol Med. 2017 Feb 1;81:111-120. doi: 10.1016/j.compbiomed.2016.12.011. Epub 2016 Dec 22.
8
Validation of Biofeedback Wearables for Photoplethysmographic Heart Rate Tracking.
J Sports Sci Med. 2016 Aug 5;15(3):540-547. eCollection 2016 Sep.
9
Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring.
IEEE Trans Biomed Eng. 2017 Apr;64(4):859-869. doi: 10.1109/TBME.2016.2580904. Epub 2016 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验