Suppr超能文献

具有随机效应的分位数回归中的贝叶斯变量选择:对城市人类发展指数的应用。

Bayesian variable selection in quantile regression with random effects: an application to Municipal Human Development Index.

作者信息

Nascimento Marcus G L, Gonçalves Kelly C M

机构信息

Departamento de Métodos Estatísticos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

出版信息

J Appl Stat. 2021 Jul 11;49(13):3436-3450. doi: 10.1080/02664763.2021.1950654. eCollection 2022.

Abstract

According to the Atlas of Human Development in Brazil, the income dimension of Municipal Human Development Index (MHDI-I) is an indicator that shows the population's ability in a municipality to ensure a minimum standard of living to provide their basic needs, such as water, food and shelter. In public policy, one of the research objectives is to identify social and economic variables that are associated with this index. Due to the income inequality, evaluate these associations in quantiles, instead of the mean, could be more interest. Thus, in this paper, we develop a Bayesian variable selection in quantile regression models with hierarchical random effects. In particular, we assume a likelihood function based on the Generalized Asymmetric Laplace distribution, and a spike-and-slab prior is used to perform variable selection. The Generalized Asymmetric Laplace distribution is a more general alternative than the Asymmetric Laplace one, which is a common approach used in quantile regression under the Bayesian paradigm. The performance of the proposed method is evaluated via a comprehensive simulation study, and it is applied to the MHDI-I from municipalities located in the state of Rio de Janeiro.

摘要

根据《巴西人类发展地图集》,市人类发展指数(MHDI-I)的收入维度是一个指标,它显示了一个市的人口确保最低生活水平以满足其基本需求(如水、食物和住所)的能力。在公共政策中,研究目标之一是确定与该指数相关的社会和经济变量。由于收入不平等,在分位数而非均值上评估这些关联可能更有意义。因此,在本文中,我们在具有分层随机效应的分位数回归模型中开发了一种贝叶斯变量选择方法。具体而言,我们假设基于广义非对称拉普拉斯分布的似然函数,并使用尖峰和平板先验来进行变量选择。广义非对称拉普拉斯分布是比非对称拉普拉斯分布更通用的替代方法,非对称拉普拉斯分布是贝叶斯范式下分位数回归中常用的方法。通过全面的模拟研究评估了所提出方法的性能,并将其应用于里约热内卢州各市的MHDI-I。

相似文献

3
The Bayesian Regularized Quantile Varying Coefficient Model.贝叶斯正则化分位数变系数模型
Comput Stat Data Anal. 2023 Nov;187. doi: 10.1016/j.csda.2023.107808. Epub 2023 Jun 23.
10
Quantile forward regression for high-dimensional survival data.高维生存数据的分位数向前回归
Lifetime Data Anal. 2023 Oct;29(4):769-806. doi: 10.1007/s10985-023-09603-w. Epub 2023 Jul 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验