Suppr超能文献

在缺乏诊断数据的情况下估计痴呆的可能性:10 项遗传研究中的潜在痴呆指数。

Estimating Likelihood of Dementia in the Absence of Diagnostic Data: A Latent Dementia Index in 10 Genetically Informed Studies.

机构信息

Department of Psychology, University of Southern California, Los Angeles, CA, USA.

Department of Psychiatry and Center for Behavior Genetics of Aging, University of California San Diego, San Diego, CA, USA.

出版信息

J Alzheimers Dis. 2022;90(3):1187-1201. doi: 10.3233/JAD-220472.

Abstract

BACKGROUND

Epidemiological research on dementia is hampered by differences across studies in how dementia is classified, especially where clinical diagnoses of dementia may not be available.

OBJECTIVE

We apply structural equation modeling to estimate dementia likelihood across heterogeneous samples within a multi-study consortium and use the twin design of the sample to validate the results.

METHODS

Using 10 twin studies, we implement a latent variable approach that aligns different tests available in each study to assess cognitive, memory, and functional ability. The model separates general cognitive ability from components indicative of dementia. We examine the validity of this continuous latent dementia index (LDI). We then identify cut-off points along the LDI distributions in each study and align them across studies to distinguish individuals with and without probable dementia. Finally, we validate the LDI by determining its heritability and estimating genetic and environmental correlations between the LDI and clinically diagnosed dementia where available.

RESULTS

Results indicate that coordinated estimation of LDI across 10 studies has validity against clinically diagnosed dementia. The LDI can be fit to heterogeneous sets of memory, other cognitive, and functional ability variables to extract a score reflective of likelihood of dementia that can be interpreted similarly across studies despite diverse study designs and sampling characteristics. Finally, the same genetic sources of variance strongly contribute to both the LDI and clinical diagnosis.

CONCLUSION

This latent dementia indicator approach may serve as a model for other research consortia confronted with similar data integration challenges.

摘要

背景

由于痴呆症的分类在不同研究中存在差异,特别是在可能无法进行临床痴呆症诊断的情况下,痴呆症的流行病学研究受到了阻碍。

目的

我们应用结构方程模型来估计多研究联盟中异构样本中的痴呆症可能性,并利用样本的双胞胎设计来验证结果。

方法

使用 10 项双胞胎研究,我们实施了一种潜在变量方法,该方法将每个研究中可用的不同测试与评估认知、记忆和功能能力的测试相匹配。该模型将一般认知能力与表明痴呆的成分分开。我们检查了这种连续潜在痴呆指数 (LDI) 的有效性。然后,我们在每个研究的 LDI 分布中确定切点,并在研究之间对齐它们,以区分可能患有和不患有痴呆症的个体。最后,我们通过确定 LDI 的遗传性以及在可用的情况下估计 LDI 与临床诊断的痴呆症之间的遗传和环境相关性来验证 LDI。

结果

结果表明,在 10 项研究中协调估计 LDI 对临床诊断的痴呆症具有有效性。可以将 LDI 拟合到不同的记忆、其他认知和功能能力变量组中,以提取反映痴呆症可能性的分数,尽管研究设计和抽样特征存在差异,但可以在研究之间进行类似的解释。最后,相同的遗传方差源强烈影响 LDI 和临床诊断。

结论

这种潜在的痴呆症指标方法可以作为其他研究联盟面对类似数据集成挑战的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d54/9741742/604d120d9cd6/jad-90-jad220472-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验