Nayak Sneha, Goveas Louella Concepta, Selvaraj Raja, Vinayagam Ramesh, Manickam Sivakumar
Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka 574110, India.
Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
Bioresour Technol. 2022 Nov;364:128073. doi: 10.1016/j.biortech.2022.128073. Epub 2022 Oct 7.
Global industrialisation and overexploitation of fossil fuels significantly impact greenhouse gas emissions, resulting in global warming and other environmental problems. Hence, investigations on capturing, storing, and utilising atmospheric CO create novel technologies. Few microorganisms, microalgae, and macroalgae utilise atmospheric CO for their growth and reduce atmospheric CO levels. Activated carbon and biochar from biomasses also capture CO. Nanomaterials such as metallic oxides, metal-organic frameworks, and MXenes illustrate outstanding adsorption characteristics, and convert CO to carbon-neutral fuels, creating a balance between CO production and elimination, thus zeroing the carbon footprint. The need for a paradigm shift from fossil fuels and promising technologies on renewable energies, carbon capture mechanisms, and carbon sequestration techniques that help reduce CO emissions for a better tomorrow are reviewed to achieve the world's sustainable development goals. The challenges and possible solutions with future perspectives are also discussed.
全球工业化以及对化石燃料的过度开发对温室气体排放产生了重大影响,导致全球变暖和其他环境问题。因此,对捕获、储存和利用大气中二氧化碳的研究催生了新技术。少数微生物、微藻和大型海藻利用大气中的二氧化碳进行生长,并降低大气中的二氧化碳水平。生物质产生的活性炭和生物炭也能捕获二氧化碳。金属氧化物、金属有机框架和MXene等纳米材料具有出色的吸附特性,能将二氧化碳转化为碳中和燃料,在二氧化碳的产生和消除之间形成平衡,从而实现碳足迹为零。本文综述了从化石燃料向可再生能源、碳捕获机制和碳封存技术等有前景的技术进行范式转变的必要性,这些技术有助于减少二氧化碳排放,以实现更美好的未来,从而实现世界可持续发展目标。还讨论了面临的挑战以及未来可能的解决方案。