Suppr超能文献

使用下一代矩阵来估计疫情中未被检测到的感染比例。

Using next generation matrices to estimate the proportion of infections that are not detected in an outbreak.

作者信息

Unwin H Juliette T, Cori Anne, Imai Natsuko, Gaythorpe Katy A M, Bhatia Sangeeta, Cattarino Lorenzo, Donnelly Christl A, Ferguson Neil M, Baguelin Marc

机构信息

MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, UK; The Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, UK.

MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, UK; The Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, UK.

出版信息

Epidemics. 2022 Dec;41:100637. doi: 10.1016/j.epidem.2022.100637. Epub 2022 Oct 6.

Abstract

Contact tracing, where exposed individuals are followed up to break ongoing transmission chains, is a key pillar of outbreak response for infectious disease outbreaks. Unfortunately, these systems are not fully effective, and infections can still go undetected as people may not remember all their contacts or contacts may not be traced successfully. A large proportion of undetected infections suggests poor contact tracing and surveillance systems, which could be a potential area of improvement for a disease response. In this paper, we present a method for estimating the proportion of infections that are not detected during an outbreak. Our method uses next generation matrices that are parameterized by linked contact tracing data and case line-lists. We validate the method using simulated data from an individual-based model and then investigate two case studies: the proportion of undetected infections in the SARS-CoV-2 outbreak in New Zealand during 2020 and the Ebola epidemic in Guinea during 2014. We estimate that only 5.26% of SARS-CoV-2 infections were not detected in New Zealand during 2020 (95% credible interval: 0.243 - 16.0%) if 80% of contacts were under active surveillance but depending on assumptions about the ratio of contacts not under active surveillance versus contacts under active surveillance 39.0% or 37.7% of Ebola infections were not detected in Guinea (95% credible intervals: 1.69 - 87.0% or 1.70 - 80.9%).

摘要

接触者追踪是传染病爆发应对措施的关键支柱,即对暴露个体进行随访以打破正在进行的传播链。不幸的是,这些系统并非完全有效,由于人们可能无法记住所有接触者,或者接触者可能未被成功追踪,感染仍可能未被发现。大量未被发现的感染表明接触者追踪和监测系统存在不足,这可能是疾病应对中一个有待改进的潜在领域。在本文中,我们提出了一种估计疫情期间未被发现的感染比例的方法。我们的方法使用由关联的接触者追踪数据和病例清单参数化的下一代矩阵。我们使用基于个体模型的模拟数据对该方法进行了验证,然后研究了两个案例:2020年新西兰SARS-CoV-2疫情中未被发现的感染比例,以及2014年几内亚埃博拉疫情。我们估计,如果80%的接触者处于主动监测之下,2020年新西兰只有5.26%的SARS-CoV-2感染未被发现(95%可信区间:0.243 - 16.0%),但根据关于未处于主动监测的接触者与处于主动监测的接触者比例的假设,几内亚39.0%或37.7%的埃博拉感染未被发现(95%可信区间:1.69 - 87.0%或1.70 - 80.9%)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验