Laha Arnab Kumar, Majumdar Sourav
Indian Institute of Management Ahmedabad, Ahmedabad, India.
Stoch Environ Res Risk Assess. 2023;37(1):305-325. doi: 10.1007/s00477-022-02298-9. Epub 2022 Sep 6.
In this paper we model an infectious disease epidemic using Multi-type Branching Process where the number of offsprings of different types follow non-identical Poisson distributions whose parameters may vary over time. We allow for variation in parameters due to the behavior of citizens, government interventions in the form of lockdown, testing and contact tracing and the infectiousness of the variant of the virus in circulation at a time-point in a location. The model can be used to estimate several unknown quantities of interest in an epidemic such as the number of undetected cases and number of people quarantined following contact tracing. The model is fitted to the publicly available COVID-19 caseload data of India, South Korea, UK and US and is seen to provide good fit. It also provides good short-term forecast of the caseload for these countries. This model can be useful for health policy planners in assessing the impact of various intervention strategies such as testing, contact tracing, quarantine etc.
在本文中,我们使用多类型分支过程对传染病流行进行建模,其中不同类型的后代数量遵循参数可能随时间变化的非齐次泊松分布。我们考虑到由于公民行为、政府以封锁、检测和接触者追踪形式进行的干预以及某一时刻某一地点流行的病毒变体的传染性而导致的参数变化。该模型可用于估计疫情中几个感兴趣的未知量,如未检测到的病例数和接触者追踪后被隔离的人数。该模型拟合了印度、韩国、英国和美国公开可用的新冠肺炎病例数据,结果显示拟合良好。它还对这些国家的病例数提供了良好的短期预测。该模型对于卫生政策规划者评估各种干预策略(如检测、接触者追踪、隔离等)的影响可能很有用。