Suppr超能文献

利用感染和住院数据集的实时确定率估计来对传染病的传播进行建模:以捷克共和国的 COVID-19 病例为例。

Using real-time ascertainment rate estimate from infection and hospitalization dataset for modeling the spread of infectious disease: COVID-19 case study in the Czech Republic.

机构信息

Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic.

RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.

出版信息

PLoS One. 2023 Jul 13;18(7):e0287959. doi: 10.1371/journal.pone.0287959. eCollection 2023.

Abstract

We present a novel approach to estimate the time-varying ascertainment rate in almost real-time, based on the surveillance of positively tested infectious and hospital admission data. We also address the age dependence of the estimate. The ascertainment rate estimation is based on the Bayes theorem. It can be easily calculated and used (i) as part of a mechanistic model of the disease spread or (ii) to estimate the unreported infections or changes in their proportion in almost real-time as one of the early-warning signals in case of undetected outbreak emergence. The paper also contains a case study of the COVID-19 epidemic in the Czech Republic. The case study demonstrates the usage of the ascertainment rate estimate in retrospective analysis, epidemic monitoring, explanations of differences between waves, usage in the national Anti-epidemic system, and monitoring of the effectiveness of non-pharmaceutical interventions on Czech nationwide surveillance datasets. The Czech data reveal that the probability of hospitalization due to SARS-CoV-2 infection for the senior population was 12 times higher than for the non-senior population in the monitored period from the beginning of March 2020 to the end of May 2021. In a mechanistic model of COVID-19 spread in the Czech Republic, the ascertainment rate enables us to explain the links between all basic compartments, including new cases, hospitalizations, and deaths.

摘要

我们提出了一种新的方法,可以基于对阳性检测的传染病和住院数据的监测,近乎实时地估计时变确证率。我们还解决了估计值的年龄依赖性问题。确证率估计基于贝叶斯定理。它可以很容易地计算和使用:(i)作为疾病传播的机制模型的一部分;(ii)估计未报告的感染或其比例的变化,作为未检测到的疫情爆发出现的早期预警信号之一。本文还包含了捷克共和国 COVID-19 疫情的案例研究。该案例研究展示了确证率估计值在回顾性分析、疫情监测、解释波之间的差异、在国家反疫情系统中的使用以及监测非药物干预措施对捷克全国监测数据集的有效性方面的使用。捷克数据显示,在 2020 年 3 月初至 2021 年 5 月底监测期间,因 SARS-CoV-2 感染而住院的老年人的概率是非老年人的 12 倍。在捷克 COVID-19 传播的机制模型中,确证率使我们能够解释包括新病例、住院和死亡在内的所有基本隔室之间的联系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1112/10343065/4dd394e019bb/pone.0287959.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验